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Regression Diagnostics

• Today’s lecture deals specifically with unusual data and how they are
identified and measured

• Regression Outliers
• Studentized residuals (and the Bonferroni adjustment)

• Leverage
• Hat values

• Influence
• DFBETAs, Cook’s D, influence plots, added-variable plots (partial

regression plots)

• Robust and resistant regression methods that limit the e↵ect of such
cases on the regression estimates will be discussed later in the course
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Outlying Observations: Who Cares?

• Can cause us to misinterpret patterns in plots
• Temporarily removing them can sometimes help see patterns that we

otherwise would not have
• Transformations can also spread out clustered observations and bring

in the outliers
• More importantly, separated points can have a strong influence on
statistical models - removing outliers from a regression model can
sometimes give completely di↵erent results

• Unusual cases can substantially influence the fit of the OLS model -
Cases that are both outliers and high leverage exert influence on both
the slopes and intercept of the model

• Outliers may also indicate that our model fails to capture important
characteristics of the data
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Example 1. Influence and Small Samples: Inequality Data

• Small samples are
especially vulnerable to
outliers - there are fewer
cases to counter the
outlier

• With Czech Republic
and Slovakia included,
there is no relationship
between Attitudes
towards inequality and
the Gini coe�cient

• If these cases are
removed, we see a
positive relationship
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Code for Previous Figure

> weakliem2 <- read.csv("http://www.quantoid.net/702/Weakliem2.txt")
> rownames(weakliem2) <- weakliem2[,1]
> outs <- which(rownames(weakliem2) %in% c("CzechRepublic", "Slovakia"))
> weakliem2$gdp <- weakliem2$gdp/10000
> plot(secpay ~ gini, data=weakliem2, main="Non-Democracies")
> abline(lm(secpay ~ gini, data=weakliem2))
> abline(lm(secpay ~ gini, data=weakliem2, subset=-outs), lty=2, col="red")
> with(weakliem2, text(gini[outs], secpay[outs],
+ rownames(weakliem2)[outs], pos=4))
> legend("topright", c("All Obs", "No Outliers"),
+ lty=c(1,2), col=c("black","red"), inset=.01)
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Ex 1. Influence and Small Samples: Inequality Data (2)

All Obs No Outliers
(Intercept) 19.4771 �5.9234

(11.0655) (5.2569)
gini �0.0759 0.4995⇤

(0.2884) (0.1336)
N 26 24
R2 0.0029 0.3887
adj. R2 �0.0387 0.3609
Resid. sd 14.8520 6.2702
Standard errors in parentheses

⇤
indicates significance at p < 0.05
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Example 2. Influence and Small Samples: Davis Data (1)

• These data are the Davis
data in the car package

• It is clear that observation
12 is influential

• The model including
observation 12 does a
poor job of representing
the trend in the data; The
model excluding
observation 12 does much
better

• The output on the next
slide confirms this
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R-script for previous slide

> library(car)
> data(Davis)
> plot(weight ~ height, data=Davis)
> with(Davis, text(height[12], weight[12], "12", pos=1))
> abline(lm(weight ~ height, data=Davis),
+ lty=1, col=1, lwd=2)
> abline(lm(weight ~ height, data=Davis, subset=-12),
+ lty=2, col=2, lwd=2)
> legend("topright", lty=c(1,2), col=c(1,2),
+ legend=c("All Cases", "Outlier Excluded"), inset=.01)
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Example 2. Influence and Small Samples: Davis Data (2)

All Obs No Outliers
(Intercept) 25.27 �130.75⇤

(14.95) (11.56)
height 0.24⇤ 1.15⇤

(0.09) (0.07)
N 200 199
R2 0.04 0.59
adj. R2 0.03 0.59
Resid. sd 14.86 8.52
Standard errors in parentheses

⇤
indicates significance at p < 0.05
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Example 3. Large Datasets: Contrived Data

• Although regression models from small datasets are most vulnerable
to unusual observations, large datasets are not completely immune

• An unusually high (or low) x or y value could easily result from
miscoding during the data entry stage. This could in turn influence
the findings

• Imagine a dataset with 1001 observations, where a variable, X1,
ranges from 0.88-7.5.

• Assume also that Y is perfectly correlated with X1.
• Even if there is just one miscode - e.g., A“55” is wrongly entered

instead of“5” - the distribution of X1 is drastically misrepresented.
This one miscode also seriously distorts the regression line.

> set.seed(123)
> x<-c(rnorm(1000,mean=4,sd=1))
> x1<-c(x,55)
> y<-c(x,5)
> range(x1)

[1] 1.190225 55.000000

> range (y)

[1] 1.190225 7.241040
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Example 3. Large Datasets: Contrived Data (2)

> mod1 <- lm(y ~ x1)
> apsrtable(mod1, model.names="", Sweave=T)

(Intercept) 2.84⇤
(0.06)

x1 0.29⇤
(0.01)

N 1001
R2 0.30
adj. R2 0.30
Resid. sd 0.83
Standard errors in parentheses

⇤
indicates significance at p < 0.05
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Example 4. Large Datasets: Marital Coital Frequency (1)

• Jasso, Guillermina (1985) ‘Marital Coital Frequency and the Passage
of Time: Estimating the Separate E↵ects of Spouses’ Ages and
Marital Duration, Birth and Marriage Cohorts, and Period
Influences,’ American Sociological Review, 50: 224-241.

• Using panel data, estimates age and period e↵ects - controlling for
cohort e↵ects - on frequency of sexual relations for married couples
from 1970-75

• Major Findings:
• Controlling for cohort and age e↵ects, there was a negative period

e↵ect;
• Controlling for period and cohort e↵ects, wife’s age had a positive

e↵ect
• Both findings di↵er significantly from previous research in the area
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Example 4. Large Datasets: Marital Coital Frequency (2)

• Kahn, J.R. and J.R. Udry (1986) ‘Marital Coital Frequency:
Unnoticed Outliers and Unspecified Interactions Lead to Erroneous
Conclusions,’ American Sociological Review, 51: 734-737, critiques
and replicates Jasso’s research. They claim that Jasso:
1. Failed to check the data for influential outliers

•
4 cases were seemingly miscoded 88 (must be missing data - coded

99 - since no other value was higher than 63 and 99.5% were less

than 40)

•
4 additional cases had very large studentized residuals (each was also

largely di↵erent from the first survey)

2. Missed an interaction between length of marriage and wife’s age

• Dropping the 8 outliers (from a sample of more than 2000) and
adding the interaction drastically changes the findings
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Example 4. Large Datasets: Marital Coital Frequency (3)

COMMENTS 735 

+ 3 lnMARDURij 
+ i PERIODi + -Y WCohi 
+ _Y2 HCohj + Y3 MARDATEj 
+ Ocx Xijk + 81Di + Eij 

Now, inWAge no longer equals PERIOD minus 
WCoh, InHAge no longer equals PERIOD minus 
HCoh, and InMARDUR no longer equals PE- 
RIOD minus MARDATE. 

The log transformation breaks the APC identity 
only if we can assume that higher order terms are 
zero. Note that in the above model, 

A = P - C. 

It follows that since 
f(A) = f(P - C), 

then ln(A) = ln(P - C). 

Now, ln(P - C) can be expanded using a Taylor 
series approximation: 

= (P - C -1) -1/2(P - C -1)2 
+ 1/3(P -C - 1)3 -.... 

ln(A) = P - C -[1 + 1/2(P - C-1)2 
- 1/3(P - C - 1)3 + ...] 

This is simply a reformulation of the APC identity. 
To break this identity, Jasso assumes that the 
quantity in brackets (i.e., the higher-order period 
and cohort terms) equals zero. As Heckman and 
Robb (1985) and Fienberg and Mason (1985) note, 
no transformation can break the APC identity 
without restrictions on the values of parameters 
(i.e., assuming some to be equal to zero). 

We have no immediate qualms about the log 
transformation; in fact, we tested the functional 
form of equation (2) using the Box-Cox transfor- 
mation and found it to be reasonable (see 
Weisberg, 1980). However, we show that Jasso's 
identifying restrictions (i.e., making all higher 
order terms equal zero) lead to a serious 
misspecification of her model. 

In theory, equation (2) is an estimable formula- 
tion of a fixed-effect age-period-cohort model. 
However, in practice, it is computationally intrac- 
table because of the large number of dummy 
variables required. It has been shown that, when 
using only two waves of panel data, equation (2) 
can be estimated using first differences (i.e., the 
model is specified for each wave and then one is 
subtracted from the other). 

Taking first differences from equation (2), we 
have: 
(3) ACFj = 3', (A lnWAgej) + 132 (A lnHAgej) 

+ i 3 (A lnMARDURj) 
+ n (A PERIOD) + atk (A Xik) 
+ AEi 

where A signifies the change between time 1 and 
time 2. 

Note that the cohort terms as well as the 
couple-specific dummies drop out of equation (3) 
because their values remain constant in the two 
waves. Each of the parameters in equation (3) can 
be interpreted as net of both the cohort effects and 
the effects of the unobservable couple-specific 
covariates. In breaking the age-period-cohort 
identity, Jasso is still unable to estimate cohort 
effects; rather, she estimates age and period effects 
that are not confounded with cohort effects. 
Specifically, she estimates equation (3) for a 
sample of continuously married women inter- 
viewed in both 1970 and 1975 as part of the 
National Fertility Survey. As described above, she 
found significant age and period effects that 
directly contradict past research. Column 1 of 
Table 1 presents Jasso's results (Jasso, 1985, Table 
4). 

Troubled by her substantive findings, we 
re-estimated equation (3) using the same data. 
Except for a sample size difference of one 
observation, we almost perfectly replicated her 

Table 1. Fixed-Effects Estimates of the Determinants of Marital Coital Frequency 

(4) (5) (6) 
(1) (2) (3) Drop 4 Marital Marital 

Jasso's Our Drop 4 Miscodes & Duration Duration 
Results Replication Miscodes 4 Outliers s 2 > 2 

Period -0.72*** -0.72*** -0.75*** -.67*** -3.06** -0.08 
Log Wife's Age 27.61** 27.50** 21.99* 13.56 29.49 -1.62 
Log Husband's Age -6.43 -6.38 1.87 7.87 57.89 -5.23 
Log Marital Duration -1.50*** -1.51** -1.61*** - 1.56*** -1.51* 1.29 
Wife Pregnant -3.71*** -3.70*** -3.71*** -3.74*** -2.88*** -3.95* 
Child under 6 -0.56** -0.55** -0.73*** -0.68*** -2.91*** -0.55** 
Wife Employed 0.37 0.38 0.17 0.23 0.86 0.02 
Husband Employed - 1.28** - 1.27** -1.29** -1.10** -4.11*** -0.38 
R 2 .0475 .0474 .0568 .0612 .2172 .0411 
N 2062 2063 2059 2055 243 1812 

* p < .10. 
** p < .05. 

*** p < .01. 
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Example 4. Large Datasets: Marital Coital Frequency (4)
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Example 4. Large Datasets: Marital Coital Frequency (5)

• Jasso, Guilermina (1986) ‘Is It Outlier Deletion or Is It Sample
Truncation? Notes on Science and Sexuality,’ American Sociological
Review, 51:738-42.

• Claims that Kahn and Udry’s analysis generates a new problem of
sample truncation bias

•
The outcome variable has been confined to a specified segment of its

range

•
She argues that we should not remove data just because they don’t

conform to our beliefs

• She doesn’t believe that the 88’s are miscodes, claiming that 2 of the
complete n=5981 were coded 98, so 88 is possible

• She claims that having sex 88 times a month - which is only 22 times
a week (or about 3 times a day) is not unrealistic :

•
There are large di↵erences in coital frequencies, especially due to

cultural/regional di↵erence
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Types of Unusual Observations (1)

1. Regression Outliers

• An observation that is unconditionally unusual in either its Y or X
value is called a univariate outlier, but it is not necessarily a
regression outlier

• A regression outlier is an observation that has an unusual value of
the outcome variable Y, conditional on its value of the explanatory
variable X

• In other words, for a regression outlier, neither the X nor the Y value
is necessarily unusual on its own

• Regression outliers often have large residuals but do not necessarily
a↵ect the regression slope coe�cient

• Also sometimes referred to as vertical outliers
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Types of Unusual Observations (2)

2. Cases with Leverage
• An observation that has an unusual X value - i.e., it is far from the
mean of X - has leverage on the regression line

• The further the outlier sits from the mean of X (either in a positive or
negative direction), the more leverage it has

• High leverage does not necessarily mean that it influences the
regression coe�cients

• It is possible to have a high leverage and yet follow straight in line
with the pattern of the rest of the data. Such cases are sometimes
called“good” leverage points because they help the precision of the
estimates. Remember, V(B) = �2

"(X0X)�1, so outliers could increase
the variance of X.
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Types of Unusual Observations (3)

3. Influential Observations
• An observation with high leverage that is also a regression outlier
will strongly influence the regression line

• In other words, it must have an unusual X-value with an unusual
Y-value given its X-value

• In such cases both the intercept and slope are a↵ected, as the line
chases the observation

Discrepancy ⇥ Leverage = Influence

19 / 52

Types of Unusual Observations (4)

• Figure (a): Outlier without influence.
Although its Y value is unusual given
its X value, it has little influence on
the regression line because it is in the
middle of the X-range

• Figure (b) High leverage because it has
a high value of X. However, because
its value of Y puts it in line with the
general pattern of the data it has no
influence

• Figure (c): Combination of discrepancy
(unusual Y value) and leverage
(unusual X value) results in strong
influence. When this case is deleted
both the slope and intercept change
dramatically.
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Assessing Leverage: Hat Values (1)

• Most common measure of leverage is the hat � value, hi

• The name hat � values results from their calculation based on the
fitted values (Ŷ):

Ŷ j = h1 jY1 + h2 jY2 + · · · + hn jYn

=

nX

i=1

hi jYi

• Recall that the Hat Matrix, H, projects the Y’s onto their predicted
values:

ŷ = Xb
= X(X0X)�1X0y
= Hy

H
(n⇥n)

= X(X0X)�1X0
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Assessing Leverage: Hat Values (2)

• If hi j is large, the ith observation has a substantial impact on the jth
fitted value

• Since H is symmetric and idempotent, the diagonal entries represent
both the ith row and the ith column:

hi = h0i hi

=

nX

i=1

h2
i j

• This means that hi = hii

• As a result, the hat value hi measures the potential leverage of Yi on
all the fitted values
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Properties of Hat Values

• The average hat value is: h̄ = k+1
n

• The hat values are bound between 1
n and 1

• In simple regression hat values measure distance from the mean of X:

hi =
1
n
+

(X � X̄)2
Pn

j=1(X j � X̄)2

• In multiple regression, hi measures the distance from the centroid
point of all of the X’s (point of means)

• Commonly used Cut-o↵:
• Hat values exceeding about twice the average hat-value should be

considered noteworthy
• With large sample sizes, however, this cut-o↵ is unlikely to identify

any observations regardless of whether they deserve attention
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Hat Values in Multiple Regression

• The diagram to the right
shows elliptical contours of
hat values for two explanatory
variables

• As the contours suggest, hat
values in multiple regression
take into consideration the
correlational and variational
structure of the X’s

• As a result, outliers in
multi-dimensional X-space are
high leverage observations -
i.e., the outcome variable
values are irrelevant in
calculating hi
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Leverage and Hat Values: Inequality Data Revisited (1)

• We start by fitting the model
to the complete dataset

• Recall that, looking at the
scatterplot of Gini and
attitudes, we identified two
possible outliers (Czech
Republic and Slovakia)

• With these included in the
model there was no apparent
e↵ect of Gini on attitudes:

(Intercept) 2.83
(12.78)

gini 0.07
(0.28)

gdp 17.52⇤
(7.99)

N 26
R2 0.18
adj. R2 0.10
Resid. sd 13.80
Standard errors in parentheses

⇤
indicates significance at p < 0.05
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Leverage and Hat Values: Inequality data Revisited (2)

• Several countries have large
hat values, suggesting that
they have unusual X values

• Notice that there are several
that have much higher hat
values than the Czech
Republic and Slovakia

• These cases have high
leverage, but not necessarily
high influence
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R-Script for Hat Values Plot

> plot(hatvalues(mod3), xlim=c(0,27),
+ main="Hat Values for Inequality model")
> cutoff <-2*3/nrow(weakliem2)
> bighat <- hatvalues(mod3) > cutoff
> abline(h=cutoff, lty=2)
> tx <- which(bighat)
> text((1:length(bighat))[tx], hatvalues(mod3)[tx],
+ rownames(weakliem2)[tx], pos=4)
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Formal Tests for Outliers: Standardized Residuals

• Unusual observations typically have large residuals but not
necessarily so - high leverage observations can have small residuals
because they pull the line towards them:

V(Ei) = �2
"(1 � hi)

• Standardized residuals provide one possible, though unsatisfactory,
way of detecting outliers:

E0i =
Ei

S E
p

1 � hi

• The numerator and denominator are not independent and thus E0i
does not follow a t-distribution: If | Ei | is large, the standard error is
also large:

S E =

s P
E2

i

n � k � 1
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Studentized Residuals (1)

• If we refit the model deleting the ith observation we obtain an
estimate of the standard deviation of the residuals S E(�1) (standard
error of the regression) that is based on the n � 1 observations

• We then calculate the studentized residuals E⇤i ’s, which have an
independent numerator and denominator:

E⇤i =
Ei

S E(�i)
p

1 � hi

Studentized residuals follow a t-distribution with n � k � 2 degrees of
freedom

• We might employ this method when we have several cases that
might be outliers

• Observations that have a studentized residual outside the ±2 range
are considered statistically significant at the 95% level
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Studentized Residuals (2)

• An alternative, but equivalent, method of calculating studentized
residuals is the so-called ‘mean-shift’ outlier model:

Yi = ↵ + �1Xi1 + �2Xi2 + · · · + �kXik + �Di + "i

where D is a dummy regressor coded 1 for observation i and 0
otherwise

• We test the null hypothesis that the outlier i does not di↵er from
the rest of the observations, H0 : � = 0, by calculating the t-test:

t0 =
�̃

cS E(�̃)

• The test statistic is the studentized residual E⇤i and is distributed as
tn�k�2

• This method is most suitable when, after looking at the data, we
have determined that a particular case might be an outlier
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Studentized Residuals (3): Bonferroni adjustment

• Since we are selecting the furthest outlier, it is not legitimate to use
a simple t-test

• We would expect that 5% of the studentized residuals would be
beyond t.025 ± 2 by chance alone

• To remedy this we can make a Bonferroni adjustment to the
p-value.

• The Bonferroni p-value for the largest outlier is: p = 2np0 where p0 is
the unadjusted p-value from a t-test with n � k � 2 degrees of freedom

• The outlierTest function in the car package for R gives
Bonferroni p-value for the largest absolute studentized residual
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Studentized Residuals (4): An Example of the Outlier Test

• The Bonferroni-adjusted outlier test in car tests the largest absolute
studentized residual.

• Recalling our inequality model:
> mod3 <- lm(secpay~gini + gdp, data=weakliem2)
> outlierTest(mod3)

rstudent unadjusted p-value Bonferonni p

Slovakia 4.317504 0.00027781 0.007223

• It is now quite clear that Slovakia (observation 26) is an outlier, but
as of yet we have not assessed whether it influences the regression
line - the test statistically significant
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Quantile Comparison Plots (1)

• We can use a quantile comparison plots to compare the distribution
of a single variable to the t-distribution, assessing whether the
distribution of the variable showed a departure from normality

• Using the same technique, we can compare the distribution of the
studentized residuals from our regression model to the t-distribution

• Observations that stray outside of the 95% confidence envelope are
statistically significant outliers

> qqPlot(mod3, simulate=T, labels=F)
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Quantile Comparison Plot (2): Inequality Data

• Here we can again see that
two cases appear to be
outliers: these are the Czech
Republic and Slovakia
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Influential Observations: DFBeta (1)

• Recall that an influential observation is one that combines
discrepancy with leverage

• The most direct approach to assessing influence is to assess how the
regression coe�cients change if outliers are omitted from the model

• We can use Di j (often termed DFBetai j) to do so:

Di j = Bj � Bj(�i) 8 i = 1, . . . , n; j = 1, . . . , k

The Bj are the coe�cients for all the data and the Bj(�i) are the
coe�cients for the same model with the ith observation removed.

• A standard cut-o↵ for an influential observation is: Di j � 2p
n
.
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Influential Observations: DFBeta (2)

• We see here Slovakia makes
the gdp coe�cient larger and
the coe�cient for gini smaller

• The Czech Republic also
makes the coe�cient for gdp
larger

• A problem with DFBetas is
that each observation has
several measures of influence -
one for each coe�cient
n(k + 1) di↵erent measures

• Cook’s D overcomes the
problem by presenting a single
summary measure for each
observation
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Identifying DFBetas

> cutoff <- 2/sqrt(26)
> big <- with(dfb, which(abs(gini) > cutoff |
+ abs(gdp) > cutoff))
> dfb[big, ]

(Intercept) gini gdp

Chile -0.51676696 0.55836187 0.3132308

CzechRepublic 0.06163614 -0.34805553 0.8471765

Slovakia 1.14014221 -1.43107966 0.5112908

Slovenia 0.17438196 0.08084083 -0.8037418

Taiwan -0.01827400 0.17003877 -0.4692173
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Influential Observations: Cook’s D (1)

• Cook’s D measures the ‘distance’ between Bj and Bj(�i) by
calculating an F-test for the hypothesis that b j = Bj(�i), for
j = 0, 1, . . . , k. An F-test is calculated for each observation as
follows:

Di =
E02i

k + 1
⇥ hi

1 � hi

where hi is the hat value for each observation and E0i is the
standardized residual

• The first fraction measures discrepancy; the second fraction
measures leverage

• There is no significance test for Di (i.e., the F-test here measures
only distance) but a commonly used cut-o↵ is:

Di >
4

n � k � 1
• The cut-o↵ is useful, but there is no substitution for examining
relative discrepancies in plots of Cook’s D versus cases, or of E0i
against hi
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Cook’s D: An Example

• We can see from this plot of
Cook’s D against the case
numbers, that Slovakia has an
unusually high level of
influence on the regression
surface

• The Czech Republic and
Slovenia also stand out ● ● ● ● ●
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> mod3.cook <- cooks.distance(mod3)
> plot(cooks.distance(mod3))
> cutoff <- with(mod3, 4/df.residual)
> abline(h=cutoff, lty=2)
> text(which(mod3.cook > cutoff), mod3.cook[which(mod3.cook > cutoff)],
+ names(mod3.cook[which(mod3.cook > cutoff)]), pos=c(4,4,2))
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Influence Plot or“Bubble Plot”

• Displays studentized residuals,
hat-values and Cook’s D on a
single plot

• The horizontal axis represents
the hat-values; the vertical
axis represents the studentized
residuals; circles for each
observation represent the
relative size of the Cook’s D

• The radius is proportional
to the square root of
Cook’s D, and thus the
areas are proportional to
the Cook’s D
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Joint Influence (1)

•
Subsets of cases can jointly influence a

regression line, or can o↵set each other’s

influence

•
The heavy solid is the regression with all cases

included; The broken line is the regression

with the asterisk deleted;The light solid line is

for the regression with both the plus and

asterisk deleted

•
Depending on where the jointly influential

cases lie, they can have di↵erent e↵ects on the

regression line.

•
(a) and (b) are jointly influential because they

change the regression line when included

together.

•
The observations in (c) o↵set each other and

thus have little e↵ect on the regression line
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Joint Influence (2)

• Cook’s D can help us determine joint influence if there are relatively
few influential cases.

• That is, we can delete cases sequentially, updating the model each
time and exploring the Cook’s D’s again

• This approach is impractical if there are potentially a large number of
subsets to explore, however

• Added-variable plots (also called partial-regression plots) provide a
more useful method of assessing joint influence

• These plots essentially show the partial relationships between Y and
each X

• We make one plot for each X
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Added Variable Plots [or Partial Regression Plots] (1)

1. Let Y (1)
i represent the residuals from the least-squares regression of

Y on all of the X’s except for X1:

Yi = A(1) + B(1)
2 Xi2 + · · · + B(1)

k Xik + Y (1)
i

2. Similarly, X(1)
i are the residuals from the regression of X1 on all the

other X’s
Xi1 = C(1) + D(1)

2 Xi2 + · · · + D(1)
k Xik + X(1)

i

3. These two equations determine the residuals X(1) and Y (1) as parts
of X1 and Y that remain when the e↵ects of X2, . . . , Xk are removed.
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Added Variable Plots (2)

• The Residuals Y (1) and X(1) have the following properties:
1. Slope of the regression of Y (1) on X(1) is the least-squares slope B1

from the full multiple regression
2. Residuals from the regression of Y (1) on X(1) are the same as the

residuals from the full regression:

Y (1)
i = B1X(1)

i1 + Ei

3. Variation of X(1) is the conditional variance of X1 holding the other
X’s constant. Consequently, except for the df the standard error from
the partial simple regression is the same as the multiple regression SE
of B1.

cS E(B1) =
S EqP

X(1)2

i
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Added Variable Plots (3): An Example

• Once again recalling the outlier model from the Inequality data

• A plot of Y (1) against X(1) allows us to examine the leverage and
influence of cases on B1

• we make one plot for each X
• These plots also gives us an idea of the precision of our slopes
(B1, . . . , Bk)

> avPlots(mod3, "gini")

> avPlots(mod3, "gdp")

45 / 52

Added Variable Plots (4): Example Continued

−10 0 10 20

−2
0

−1
0

0
10

20
30

40

gini | others

se
cp

ay
  |

 o
th

er
s

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−1
0

0
10

20
30

40

gdp | others

se
cp

ay
  |

 o
th

er
s

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

• We see here that the Czech Republic and Slovakia have unusually
high Y values given their X’s

• Because they are on the extreme of the X-range as well, they are
most likely influencing both slopes
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Unusual Observations and their impact on Standard Errors

• Depending on their location, unusual observations can either
increase or decrease standard errors

• Recall that the standard error for a slope is as follows:

cS E(B) =
S EqP

(Xi � X)2

• An observation with high leverage (i.e., an X-value far from the
mean of X) increases the size of the denominator, and thus
decreases the standard error

• A regression outlier (i.e., a point with a large residual) that does not
have leverage (i.e., it does not have an unusual X-value) does not
change the slope coe�cients but will increase the standard error

47 / 52

Unusual Cases: Solutions

• Unusual observations may reflect miscoding, in which case the
observations can be rectified or deleted entirely

• Outliers are sometimes of substantive interest:
• If only a few cases, we may decide to deal separately with them
• Several outliers may reflect model misspecification - i.e., an important

explanatory variable that accounts for the subset of the data that are
outliers has been neglected

• Unless there are strong reasons to remove outliers we may decide to
keep them in the analysis and use alternative models to OLS, for
example robust regression, which down weight outlying data.

• Often these models give similar results to an OLS model that omits
the influential cases, because they assign very low weight to highly
influential cases
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Summary (1)

• Small samples are especially vulnerable to outliers - there are fewer
cases to counter the outlier

• Large samples can also be a↵ected, however, as shown by the
“marital coital frequency”example

• Even if you have many cases, and your variables have limited ranges,
miscodes that could influence the regression model are still possible

• Unusual cases are only influential when they are both unusual in
terms of their Y value given their X (outlier), and when they have
an unusual X-value (leverage):

Influence = Leverage ⇥ Discrepency
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Summary (2)

• We can test for outliers using studentized residuals and quantile -
comparison plots

• Leverage is assessed by exploring the hat-values

• Influence is assessed using DFBetas and, preferably Cook’s D’s

• Influence Plots (or bubble plots) are useful because they display the
studentized residuals, hat-values and Cook’s distances all on the
same plot

• Joint influence is best assessed using Added Variable Plots (or
partial regression plots)
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