
LSIRM Statistical/Machine Learning

Lecture 4: Linearity Diagnostics

Dave Armstrong

University of Western Ontario
Department of Political Science

e: dave.armstrong@uwo.ca
w: www.quantoid.net/teachwlu/

1 / 84

Outline

• Splines
• Basis Functions
• B-splines
• Importance of number of knots and knot placement

• Worked example

2 / 84

Definition of Splines

Splines are:

... piecewise regression functions we constrain to join at

points called knots (Keele 2007, 70)

• In their simplest form, they are dummy regressors that we use to
force the regression line to change direction at some value(s) of X .

• These are similar in spirit to LPR models where we use a subset
of data to fit local regressions (but the window doesn’t move
here).

• These are also allowed to take any particular functional form,
but they are a bit more constrained than the LPR model.

3 / 84

Splines vs. LPR Models

• Splines provide a better MSE fit to the data.

• Where MSE

⇣

�̂

⌘

= Var
⇣

�̂

⌘

+
⇣

Bias
⇣

�̂ ,�
⌘⌘2

• Generally, LPR models will have smaller bias, but much greater
variance.

• Splines can be designed to prevent over-fitting (smoothing
splines)

• Splines are more easily incorporated in semi-parametric models.

4 / 84

Regression Splines

We start with the following familiar model:

� = f (x) + �
Here, we would like to estimate this with one model rather than a
series of local models.

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
10

20
30

40
50

60
70

x

y

5 / 84

Failure of Polynomials and LPR

Given what we already learned, we could fit a quadratic polynomial
or a LPR:

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
10

20
30

40
50

60
70

x

y

Polynomial, df=2
LPR, df=4.75

6 / 84

Simple Example

In this simple example, it is easy to figure out what sort of model we
want:

• It appears that the relationship between x and � would be
well-characterized by two lines.

• One with a negative slope in the range x = [0, 60)
• One with a positive slope in the range x = [60, 100]

These are all the things we need to know right now to model the
relationship.

7 / 84

Dummy Interactions

You might ask, couldn’t we just use an interaction between x and a
dummy variable coded 1 if x > 60 and zero otherwise.

� = b0 + b1x1 + b2d + b3x ⇥ d + e

This seems like a perfectly reasonable thing to do. What can it give
you though:

0 20 40 60 80 100
0

10
20

30
40

50
60

x

pr
ed

8 / 84

Basis Functions

A basis function is really just a function that transforms the values of
X. So, instead of estimating:

�i = �0 + �1xi + �i

we estimate:

�i = �0 + �1b1(xi) + �2b2(xi) + . . . + �kbk (xi) + �i
The basis functions bk (·) are known ahead of time (not estimated by
the model).

• We can think of polynomials as basis functions where bj (xi) = x

j
i

9 / 84

Piecewise Polynomials

One way that we can think about regression splines is as piecewise
polynomial functions:

�i =

⇢

�01 + �11xi + �21x
2
i + �31x

3
i + �i xi < c

�02 + �12xi + �22x
2
i + �32x

3
i + �i xi � c

Just as above though, these polynomials are unconstrained and can
generate a discontinuity at the knot location c.

10 / 84

Constraining the Model

To constrain the model, the splines are constructed:

• such that the first and second derivatives of the function
continuous.

• Each constraint reduces the number of degrees of freedom we use
by one.

• In general, the model uses: Polynomial Degree + # Knots + 1
degrees of freedom

11 / 84

Truncated Power Basis Functions

The easiest set of Spline functions to consider (for knot location k)
are called truncated power functions, defined as:

h(x ,k) = (x � k)3+ =
⇢

(x � k)3 if x > k

0 otherwise

When using these basis functions in, we put the full (i.e., global)
parametric function in and a truncated power function of degree n for
each knot.

12 / 84

Linear Truncated Power Functions

To use the truncated power basis for our problem, we need:

• The global linear model

• One truncated power function for the x values greater than the
knot location (60).

� = b0 + b1x + b2(x � 60)1+ + e
This sets up essentially 2 equations:

x 60 :� = b0 + b1x

x > 60 :� = b0 + b1x + b2(x � 60) = (b0 � 60b2) + (b1 + b2)x

Notice that here we are only estimating 3 parameters, where the
interaction would estimate 4 parameters. Thus, this is a constrained
version of the interaction.

13 / 84

Fixing the Discontinuity

Including x and (x � 60)+ as regressors, which generates the following
predictions:
(Note, with piecewise linear functions, we’re not constraining the
derivatives to be continuous).

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
10

20
30

40
50

60
70

x

y

14 / 84

Example: Cubic Spline

Consider the following relationship:

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−5
0

5
10

x

y

15 / 84

Truncated Power Basis Functions: Cubic Spline

� = b0 + b1x + b2x
2 + b3x

3 +

knots
’

m�1
bk+3(x � km)3+

Let’s consider our example with 3 knots k = {.25, .5, .75}
##
Call:
lm(formula = y ~ x + I(x^2) + I(x^3) + I((x - k[1])^3 * (x >=
k[1])) + I((x - k[2])^3 * (x >= k[2])) + I((x - k[3])^3 *
(x >= k[3])))
##
Residuals:
Min 1Q Median 3Q Max
-5.1553 -1.3015 0.0084 1.3594 5.3203
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.4789 0.6386 -2.316 0.021079 *
x 68.4874 14.2232 4.815 2.10e-06 ***
I(x^2) -72.4938 83.6956 -0.866 0.386931
I(x^3) -183.0427 139.7292 -1.310 0.190967
I((x - k[1])^3 * (x >= k[1])) 690.4099 186.6713 3.699 0.000248 ***
I((x - k[2])^3 * (x >= k[2])) -978.1580 103.0594 -9.491 < 2e-16 ***
I((x - k[3])^3 * (x >= k[3])) 1334.8591 186.6713 7.151 4.24e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2.02 on 393 degrees of freedom
Multiple R-squared: 0.6416,Adjusted R-squared: 0.6361
F-statistic: 117.3 on 6 and 393 DF, p-value: < 2.2e-16

16 / 84

Plotting the Curve

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−5
0

5
10

x

y
Estimated
True

17 / 84

Problems with Truncated Power Basis Functions

• Highly collinear and can lead to instability and singularities (i.e.,
computationally bad stu↵) at worst.

• Not as “local” as some other options, the support of the
piecewise functions can be over the whole range of the data or
nearly the whole range of the data.

• Can produce erratic tail behavior.

Other basis functions, like the B-spline basis functions solve all of
these problems:

• Reduces collinearity (though doesn’t eliminate it)

• Support of the function is more narrowly bounded.

• Uses knots at the boundaries of x and assumes linearity beyond
the knots.

18 / 84

Example: B-spline

library(splines)
csmod2 <- lm(y ~ bs(x, knots=c(.25,.5,.75)))
summary(csmod2)

##
Call:
lm(formula = y ~ bs(x, knots = c(0.25, 0.5, 0.75)))
##
Residuals:
Min 1Q Median 3Q Max
-5.1553 -1.3015 0.0084 1.3594 5.3203
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.4789 0.6386 -2.316 0.02108
bs(x, knots = c(0.25, 0.5, 0.75))1 5.7073 1.1853 4.815 2.1e-06
bs(x, knots = c(0.25, 0.5, 0.75))2 14.1013 0.7617 18.513 < 2e-16
bs(x, knots = c(0.25, 0.5, 0.75))3 0.4703 0.9425 0.499 0.61808
bs(x, knots = c(0.25, 0.5, 0.75))4 8.1830 0.8696 9.410 < 2e-16
bs(x, knots = c(0.25, 0.5, 0.75))5 -1.8705 0.9846 -1.900 0.05819
bs(x, knots = c(0.25, 0.5, 0.75))6 2.8050 0.8880 3.159 0.00171
##
(Intercept) *
bs(x, knots = c(0.25, 0.5, 0.75))1 ***
bs(x, knots = c(0.25, 0.5, 0.75))2 ***
bs(x, knots = c(0.25, 0.5, 0.75))3
bs(x, knots = c(0.25, 0.5, 0.75))4 ***
bs(x, knots = c(0.25, 0.5, 0.75))5 .
bs(x, knots = c(0.25, 0.5, 0.75))6 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2.02 on 393 degrees of freedom
Multiple R-squared: 0.6416,Adjusted R-squared: 0.6361
F-statistic: 117.3 on 6 and 393 DF, p-value: < 2.2e-16

Notice that the fit here is precisely the same as with the the
truncated power basis functions
p1 <- predict(csmod)
p2 <- predict(csmod2)
cor(p1$fit, p2$fit)

Error in p2$fit: $ operator is invalid for atomic vectors

19 / 84

Interpreting Spline Coe�cients

So, how do you interpret the spline coe�cients?

• You don’t.

• Remember that these are all functions of x , so we cannot change
the values of one component of the basis function while holding
the others constant, the others would have to change, too.

20 / 84

Choices in Spline Models

Degree: the analyst has to choose the degree of the polynomial
fit to the subsets of the data.

Number of knots: the analyst has to choose the number of knots

Location of knots: Often, knots are spaced evenly over the support of
the data (i.e., the range of x), but that needn’t be the
case.

• Knot placement can be guided by theory if possible.
• Otherwise, for the functions we generally need to
estimate, a few knots should probably work just fine.

21 / 84

How important is knot placement?

I did a simulation where I did the following:

1. Create � using a B-spline with knot locations at k = {.1, .6, .8}
plus some random normal error

2. Randomly draw knot values from a uniform distribution
k

⇤ ⇠ U (0, 1) (and ensure they are ordered from smallest to
largest).

3. Estimate a model using the randomly drawn knot locations and
save predictions �̂⇤

4. Correlate � and �̂

⇤

5. Plot correlations as a function of the euclidian distance between
k and k

⇤ (i.e.,
Õ3

i=1(ki � k

⇤
i)2)

22 / 84

Plot

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

d

re
s[

, 4
]

23 / 84

How Important is Knot Placement? II

• So long as the polynomial degree is reasonably high (3 should be
high enough for what we do, but 4 might be useful if you have a
very complicated function), knot placement is not particularly
important.

• Use theory, if it exists, to place knots.

• If theory doesn’t exist, knots placed evenly across the range of x
will, in general, minimize error.

• If you think about the knots as random variables (because we
don’t know their values) and further that they are distributed
uniformly (i.e., neither middle or extreme values are more likely),
then technically evenly spaced knots minimize distance to the
true, but unknown knots.

24 / 84

How Important is Polynomial Degree?

• Pretty important, particularly if we don’t know or have a really
good sense of where the knots should be.

• B-splines are more forgiving of knot placement errors the higher
the polynomial degree.

• Generally no good reason to use something more restrictive than
a cubic spline.

• We are generally not trying to model particularly complicated
functions.

• More knots are more likely to be used than a higher polynomial
degree to make the function more flexible.

25 / 84

How Important is the Number of Knots

• Flexibility increases with number of knots and polynomial degree.

• Increasing number of knots can make the function more flexible.

• We can use AIC, BIC or Cross-Validation to choose number of
knots.

26 / 84

AIC for Number of Knots

library(DAMisc)
tmp <- data.frame(x=x, y=y)
NKnots(y ~ 1, "x", tmp, plot=TRUE, criterion="AIC")

●

●

●

● ●

●
● ●

●
●

4 6 8 10 12

16
80

17
00

17
20

17
40

Degrees of Freedom

AI
C

●

27 / 84

Worked Example

library(car)

library(foreign)

dat <- read.dta(

"http://www.quantoid.net/files/reg3/jacob.dta")

dat$perotnorm <- bcnPower(dat$perotvote, 1.55, gamma=33)

rawlm <- lm(chal_vote ~ perotnorm + chal_spend +

exp_chal, data=dat)

28 / 84

Raw Model

summary(rawlm)

##
Call:
lm(formula = chal_vote ~ perotnorm + chal_spend + exp_chal, data = dat)
##
Residuals:
Min 1Q Median 3Q Max
-20.3971 -4.5456 0.3237 4.4299 17.9832
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.44642 1.94949 7.410 1.22e-12 ***
perotnorm 0.06341 0.01451 4.369 1.71e-05 ***
chal_spend 3.35775 0.28007 11.989 < 2e-16 ***
exp_chal 2.22782 0.99170 2.246 0.0254 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.781 on 308 degrees of freedom
Multiple R-squared: 0.4487,Adjusted R-squared: 0.4433
F-statistic: 83.55 on 3 and 308 DF, p-value: < 2.2e-16

29 / 84

GDP

crPlots(rawlm, layout=c(1,3))

60 80 100 120 140 160 180 200

−2
0

−1
0

0
10

perotnorm

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

)

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●
●

●

●

●

●●

●●

●

2 3 4 5 6 7

−2
0

−1
0

0
10

20

chal_spend

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

)

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

−1
0

0
10

exp_chal

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

) ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●●
●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

Component + Residual Plots

30 / 84

Perot Vote Polynomial

mod <- lm(chal_vote ~ poly(perotnorm, 2) + chal_spend + exp_chal, data=dat)
summary(mod)

##
Call:
lm(formula = chal_vote ~ poly(perotnorm, 2) + chal_spend + exp_chal,
data = dat)
##
Residuals:
Min 1Q Median 3Q Max
-18.3537 -4.6612 0.4819 4.1575 17.2497
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.2604 1.1263 19.765 < 2e-16 ***
poly(perotnorm, 2)1 30.1626 6.6995 4.502 9.56e-06 ***
poly(perotnorm, 2)2 -25.2270 6.6594 -3.788 0.000183 ***
chal_spend 3.2799 0.2750 11.929 < 2e-16 ***
exp_chal 2.2539 0.9709 2.321 0.020919 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.638 on 307 degrees of freedom
Multiple R-squared: 0.4733,Adjusted R-squared: 0.4664
F-statistic: 68.96 on 4 and 307 DF, p-value: < 2.2e-16

31 / 84

Is 2 DF Enough for Perot Vote?

library(DAMisc)
NKnots(chal_vote ~ chal_spend + exp_chal,

"perotnorm", max.knots=3, data=dat, includePoly=T,
criterion="CV", plot=T, cviter=10)

32 / 84

More CR Plots

crPlots(mod, layout=c(1,3))

−8 −6 −4 −2 0 2

−2
0

−1
0

0
10

poly(perotnorm, 2)

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

)

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●●

●●

●

2 3 4 5 6 7

−2
0

−1
0

0
10

20

chal_spend

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

)

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

−1
5

−1
0

−5
0

5
10

15

exp_chal

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

) ●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

Component + Residual Plots

33 / 84

Challenger Spending

mod2 <- lm(chal_vote ~ bs(perotnorm, df=4) + poly(chal_spend,3) + exp_chal, data=dat)
summary(mod2)

##
Call:
lm(formula = chal_vote ~ bs(perotnorm, df = 4) + poly(chal_spend,
3) + exp_chal, data = dat)
##
Residuals:
Min 1Q Median 3Q Max
-16.1918 -4.3469 0.2869 3.9500 18.3635
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.6907 2.7834 6.356 7.60e-10 ***
bs(perotnorm, df = 4)1 23.3641 4.6557 5.018 8.90e-07 ***
bs(perotnorm, df = 4)2 13.9058 3.1374 4.432 1.30e-05 ***
bs(perotnorm, df = 4)3 23.9656 4.7769 5.017 8.96e-07 ***
bs(perotnorm, df = 4)4 15.7760 5.1871 3.041 0.002561 **
poly(chal_spend, 3)1 86.9915 7.2014 12.080 < 2e-16 ***
poly(chal_spend, 3)2 25.6738 6.5240 3.935 0.000103 ***
poly(chal_spend, 3)3 -12.4961 6.5378 -1.911 0.056903 .
exp_chal 1.5835 0.9532 1.661 0.097712 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.38 on 303 degrees of freedom
Multiple R-squared: 0.5198,Adjusted R-squared: 0.5072
F-statistic: 41.01 on 8 and 303 DF, p-value: < 2.2e-16

34 / 84

CR Plots

crPlots(mod2, layout=c(1,3))

−15 −10 −5 0

−2
0

−1
0

0
10

bs(perotnorm, df = 4)

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

) ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●● ●

−5 0 5 10

−2
0

−1
0

0
10

20

poly(chal_spend, 3)

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

)

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

−1
5

−1
0

−5
0

5
10

15

exp_chal

C
om

po
ne

nt
+R

es
id

ua
l(c

ha
l_

vo
te

)

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

Component + Residual Plots

35 / 84

Knots for Challenger Spending

NKnots(chal_vote ~ bs(perotnorm, 4) + exp_chal,

"chal_spend", max.knots=3, data=dat, includePoly=T,

criterion="CV", plot=T, cviter=10)

36 / 84

Spline for Challenger Spending

mod3 <- lm(chal_vote ~ bs(perotnorm, df=4) + bs(chal_spend,df=4) + exp_chal, data=dat)
summary(mod3)

##
Call:
lm(formula = chal_vote ~ bs(perotnorm, df = 4) + bs(chal_spend,
df = 4) + exp_chal, data = dat)
##
Residuals:
Min 1Q Median 3Q Max
-15.4429 -4.5351 0.1465 4.1241 18.5350
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.1453 2.6481 4.586 6.62e-06 ***
bs(perotnorm, df = 4)1 21.8213 4.6148 4.729 3.47e-06 ***
bs(perotnorm, df = 4)2 13.5091 3.0948 4.365 1.75e-05 ***
bs(perotnorm, df = 4)3 23.1377 4.7155 4.907 1.52e-06 ***
bs(perotnorm, df = 4)4 14.0190 5.1429 2.726 0.00679 **
bs(chal_spend, df = 4)1 4.4007 2.7002 1.630 0.10419
bs(chal_spend, df = 4)2 -4.7143 3.1110 -1.515 0.13073
bs(chal_spend, df = 4)3 24.9053 3.0987 8.037 2.09e-14 ***
bs(chal_spend, df = 4)4 10.8618 4.1055 2.646 0.00858 **
exp_chal 1.2397 0.9458 1.311 0.19095

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.288 on 302 degrees of freedom
Multiple R-squared: 0.5351,Adjusted R-squared: 0.5212
F-statistic: 38.62 on 9 and 302 DF, p-value: < 2.2e-16

37 / 84

E↵ects

library(effects)
plot(effect("bs(perotnorm, df=4)", mod3, xlevels=100))

plot(effect("bs(chal_spend, df=4)", mod3, xlevels=100))

perotnorm effect plot

perotnorm

ch
al

_v
ot

e

10

15

20

25

30

35

40

 60 80 100 120 140 160 180

chal_spend effect plot

chal_spend

ch
al
_v
ot
e

30

35

40

45

50

2 3 4 5 6 7

38 / 84

Testing Functional Form Hypotheses

NKnotsTest(chal_vote ~ bs(chal_spend,df=4) + exp_chal,
"perotnorm", data=dat, targetdf=4, adjust="none")

F DF1 DF2 p(F) Clarke Pr(Better) p(Clarke) Delta_AIC
DF=4 vs. DF=1 10.451* 3 302 0.000 168 0.538 0.193 24.818
DF=4 vs. DF=2 6.615* 2 302 0.002 149 0.478 0.462 9.377
DF=4 vs. DF=3 7.356* 1 302 0.007 163 0.522 0.462 5.509
Target
DF=4 vs. DF=5 NANA 1 301 NA 239* 0.766 0.000 (T) 2.168
DF=4 vs. DF=6 0.250 2 300 0.779 243* 0.779 0.000 (T) 3.479
DF=4 vs. DF=7 0.645 3 299 0.587 227* 0.728 0.000 (T) 3.988
DF=4 vs. DF=8 0.920 4 298 0.453 233* 0.747 0.000 (T) 4.172
DF=4 vs. DF=9 0.874 5 297 0.499 249* 0.798 0.000 (T) 5.442
DF=4 vs. DF=10 0.789 6 296 0.579 244* 0.782 0.000 (T) 7.048
DF=4 vs. DF=11 0.707 7 295 0.667 242* 0.776 0.000 (T) 8.812
DF=4 vs. DF=12 0.716 8 294 0.677 241* 0.772 0.000 (T) 9.979
DF=4 vs. DF=13 0.674 9 293 0.732 240* 0.769 0.000 (T) 11.606
Delta_AICc Delta_BIC
DF=4 vs. DF=1 24.413 13.589
DF=4 vs. DF=2 9.093 1.891
DF=4 vs. DF=3 5.360 1.766
Target
DF=4 vs. DF=5 2.332 5.911
DF=4 vs. DF=6 3.821 10.965
DF=4 vs. DF=7 4.523 15.217
DF=4 vs. DF=8 4.913 19.144
DF=4 vs. DF=9 6.406 24.157
DF=4 vs. DF=10 8.250 29.506
DF=4 vs. DF=11 10.267 35.014
DF=4 vs. DF=12 11.701 39.923
DF=4 vs. DF=13 13.612 45.293

39 / 84

Smoothing Splines and GAMs
Smoothing Splines
Generalized Additive Models

Example: Canadian Occupational Prestige
Interpretation
RSS and Degrees of Freedom
Model Testing

40 / 84

Smoothing Splines

A common criticism of both LPR and Cubic Spline models in the
social sciences is that they are too flexible.

• A model that is overfit has: “too many parameters relative to the
amount of data and cause random variation in the data to
appear as a systematic e↵ect” (Keele 2007, 90)

Spline models, since they are estimated with OLS, minimize the
following:

SS(f) =
n
’

i=1
[� � f (x)]2

Smoothing splines penalize extra parameters to place extra weight on
parsimony; they minimize the following:

SS(f) =
n
’

i=1
[� � f (x)]2 + �

π xn

x1
[f 00(x)]2dx

The second term imposes a “roughness penalty”.
41 / 84

Choosing the Smoothing

You can make either one of two choices to govern how smooth the
curve looks - the degrees of freedom or � (actually in R, � is a
function of the spar argument to the command).

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(a) spar = 0

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(b) spar = 0.1

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(c) spar = 1

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(d) spar = 10

42 / 84

Choosing �

• How do we determine the appropriate value for the smoothing
parameter � given a data set

• The same value of � is unlikely to work equally well with every
data set

• The “best” choice of smoothing parameter is one that minimizes
the mean squared error:

L(�) = n�1
n
’

i=1
(f (xi) � f�(xi))2

• In other words, the choice of � depends on the unknown true
regression curve and the inherent variability of the smoothing
estimator

• We must estimate L(�) in order to get a data driven choice for �

43 / 84

Cross-validation for choosing �

• Cross-validation re-samples the original sample

• The data are split into k subsets and then our model is fit k
times, each trying to predict using the left-out subset

• Prediction error for each subset is then calculated as the sum of
squared errors:

RSS =
’

(Yi � Ŷi)2

• We do this with several possible models, choosing the one with
the smallest average error (i.e., mean squared error)

MSE =

Õ(Yi � Ŷ)2
n

• Generalized Cross Validation (GCV) is the most commonly used
method for choosing the smoothing parameter � for smoothing
spline models

44 / 84

Cross-validation for choosing � (2)

• GCV uses n subsets of the data
• Each subset removes one observation from the dataset

• That is, there is one subset corresponding to each observation that
is removed

• The GCV criterion is then defined as:

GCV (�) =
Õn

i=1(�i � f̂�(xi))2
�

1 � n

�1
tr (S)

�2

• Simply put, GCV compares the fit of all models based on all
possible values of �, choosing the one that fits best

• GCV choice of � is typically the default method in software
programs, including the packages in R

45 / 84

Degrees of Freedom

• As with lowess smoothing, the d f for smoothing splines are an
approximate generalization of the number of parameters in the
parametric model

• In exactly the same way, d f for nonparametric spline models are
obtained from the diagonal of the smoother matrix S, which plays
a similar role to the hat matrix H in linear regression, it
transforms Y into Ŷ

• The approximate or e↵ective degrees of freedom are defined by:
d f� = trace(S�)

• The d f� specifies, the approximate number of parameters used to
fit the spline

• Using the e↵ective degrees of freedom, we can carry out F -tests
to compare di↵erent estimates and models applied to the same
dataset, especially to compare the nonparametric smooth model
to a linear model

46 / 84

Smoothing Splines in R

• Two packages in R can be used to fit smoothing splines:
• the smoothing.spline function in the splines package
• the sm.spline function in the pspline package

• Since d f� = trace(S�) we can either specify � directly or invert the
relationship and specify degrees of freedom instead

• The latter method is much easier and somewhat more intuitive
• By default, GCV is used by both the smooth.spline and
sm.spline functions to choose �

• Remember, like lowess models, this is a nonparametric model, so
the e↵ects must be graphed

47 / 84

Comparing Degrees of Freedom

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(e) df = 2

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(f) df = 5

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(g) df = 10

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

perot

ch
al
_v
ot
e

(h) df = 20

48 / 84

Additive Regression Models

• Additive regression models essentially apply local regression to
low-dimensional projections of the data

• That is, they estimate the regression surface by a combination of a
collection of one-dimensional functions

• The nonparametric additive regression is:

Y = A + f1(X1) + f2(X2) + · · · + fk (Xk) + �

where the fj are arbitrary functions estimated from the data, the
� are assumed to have constant variance and mean 0

• The estimated functions fj are the analogues of the coe�cients in
linear regression

49 / 84

Additive Regression Models (2)

• The assumption that the contribution of each covariate is
additive is analogous to the assumption in linear regression that
each component is estimated separately

• Recall that the linear regression model is

Y = A +

k
’

j=1
BjX j + �

where Bj represent linear e↵ects
• For the additive model, we model Y as an additive combination
of arbitrary functions of the X ’s:

Y = A +

k
’

j=1
fj (X j) + �

• The fj represent arbitrary trends that can be estimated by lowess
or smoothing splines

50 / 84

Additive Regression Models (3)

• Now comes the question: How do we find these arbitrary trends?
• If the X ’s are completely independent (which they won’t be) we
could just estimate each functional form using nonparametric
regression of Y on each of the X ’s independently

• Similarly in linear regression when the X ’s are completely
uncorrelated, the partial regression slopes are identical to the
marginal regression slopes

• Since the X ’s are related, however, we need to proceed in another
way, in essence removing the e↵ects of other predictors which are
unknown before we begin

• We use a procedure called backfitting to find each curve,
controlling for the e↵ects of the others

51 / 84

Estimation and Backfitting

• Suppose that we have a two predictor additive model:

Yi = � + f1(xi1) + f2(xi2) + �i

• If we unrealistically know the partial regression function f2, but
not f1, we could rearrange the equation in order to solve for f1:

Yi � f2(xi2) = � + f1(xi1) + �i

• In other words, smoothing Yi � f2(xi2) against xi1 produces an
estimate of � + f1(xi1)

• Simply put, knowing one function allows us to find the other - in
the real world, however, we don’t know either so we must
proceed initially with preliminary estimates

52 / 84

Estimation and Backfitting (2)

1. Start by expressing the variables in mean deviation form so that
the partial regressions sum to zero, thus eliminating the
individual intercepts

2. Take the preliminary estimates of each function from a least
squares regression of Y on the X ’s:

�i � �̄ = b1(xi1 � x̄1) + b2(xi2 � x̄2) + �i
�

⇤
i = b1x

⇤
i1 + b2x

⇤
i2 + �i

3. The preliminary estimates are used as step (0) in an iterative
estimation process

f

(0)
1 = b1x

⇤
i1

f

(0)
2 = b2x

⇤
i2

4. Find the partial residuals for X1 (recall the partial residuals
remove Y from its linear relationship to X2 while retaining the
relationship with X1

53 / 84

Estimation and Backfitting (3)

The partial residuals for X1 are then

e

(1)
i[1] = �

⇤
i � b2(x⇤i2)

= ei + b1x
⇤
i1

5. The same procedure in step 4 is done for x⇤2
6. Next, we smooth these partial residuals against their respective

X ’s, providing a new estimate of f

f

(1)
k = smooth

h

e

(1)
i[k] on x

⇤
ik

i

= Sk
n

Yi �
h

f

(1)
1 (x⇤i1) + f

(1)
2 (xi2)⇤

io

where S is the n ⇥ n smoother transformation matrix for X j that
depends only on the configuration of Xi j for the j

th predictor

54 / 84

Estimation and Backfitting (4)

• either loess or smoothing splines can be used to find the
regression curves

• If local polynomial regression is used, a decision must be made
about the span that is used

• If a smoothing spline is used, the degrees of freedom can be
specified beforehand or using cross-validation with the goal of
minimizing the penalized residual sum of squares

RSS(f , �) =
N
’

i=1
{�i � f (xi)}2 + �

π xn

x1
f

00(x)2dx

• The first term measures the closeness to the data; the second
term penalizes the curvature of the function

55 / 84

Estimation and Backfitting (5)

• The process of finding new estimates of the functions by
smoothing the partial residuals is reiterated until the partial
functions converge

• That is, when the estimates of the smooth functions stabilize from
one iteration to the next, we stop

• When this process is done, we obtain estimates of sj (Xi j) for
every value of X j

• More importantly, we will have reduced a multiple regression to a
series of two-dimensional partial regression problems, making
interpretation easy:

• Since each partial regression is only two-dimensional, the
functional forms can be plotted in two dimensions showing the
partial e↵ect of each X j on Y

• In other words, perspective plots are not necessary, unless we
include an interaction between two smoothed terms

56 / 84

Di↵erent Smoothers Available

• Thin plate regression splines: low-rank, isotonic smoother for any
number of covariates. Bestfor single-term smooths and multiple
term smooths where both terms are measured in the same units.
Specify with bs='tp'. This is the default in mgcv.

• Thin plate spline + shrinkage: Penalized so the whole term could

shrink to zero. Specify with bs='ts'.

• Cubic Regression Splines (like a b-spline), specify with bs='cr'.

• Cubic Regression Spline + shrinkage: A shrinkage version of
cubic regression splines, addes an additional shrinkage penalty.
Specify with bs='cs'.

• Tensor product smooth: Best for multiple-term smooths,
particularly when the multiple terms are measured in di↵erent
units. Specify with the te() function for a multiple-terms
smooth or with ti(x), ti(y) and ti(x,y) for a test of
additivity. Can also specify any of the bs=X from above in the
tensor product function.

57 / 84

Additive Regression Models in R : Canadian Prestige (2)

• The summary function returns tests for each smooth, the degrees
of freedom for each smooth and an adjusted R

2 for the model
• The deviance can be obtained from the command
deviance(model)

library(mgcv)
library(car)
data(Prestige)
prestige.gam <- gam(prestige ~ s(income) + s(education), data=Prestige)
summary(prestige.gam)

##
Family: gaussian
Link function: identity
##
Formula:
prestige ~ s(income) + s(education)
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 46.8333 0.6889 67.98 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(income) 3.118 3.877 14.61 1.53e-09 ***
s(education) 3.177 3.952 38.78 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.836 Deviance explained = 84.7%
GCV = 52.143 Scale est. = 48.414 n = 102

58 / 84

Additive Regression Models in R : Canadian Prestige (3)

• Again, as with other nonparametric models, we have no slope
parameters to investigate (we do have an intercept, however)

• A plot of the regression surface is necessary

vis.gam(prestige.gam, theta=-40)

59 / 84

Additive Regression Models in R : Canadian Prestige (4)

• We can see the nonlinear
relationship for both
education and income with
prestige, but there is no real
interaction (i.e., the slope for
income is the same at every
value of education) income

education

linear predictor

60 / 84

Additive Regression Models in R : Canadian Prestige (5)

The vis.gam() function can also make perspective plots with
confidence regions if you use the se=2 argument

income

education

linear predictor

red/green are +/− 2 s.e.

income

education

linear predictor

red/green are +/− 2 s.e.

income

education

linear predictor

red/green are +/− 2 s.e.

61 / 84

Additive Regression Models in R : Canadian Prestige (6)

• Since the slices of the additive regression in the direction of one
predictor (holding the other constant) are parallel, we can graph
each partial regression function separately

• This is the benefit of the additive model
• We can graph as many plots as there are variables, and allowing

us to easily visualize the relationships

• In other words, a multidimensional regression has been reduced
to a series of two-dimensional partial-regression plots

62 / 84

Other Smoothers

gam1 <- gam(prestige ~ s(income, bs="tp") +
s(education, bs="tp"), data=Prestige)

gam2 <- gam(prestige ~ s(income, bs="cr") +
s(education, bs="cr"), data=Prestige)

gam3 <- gam(prestige ~ s(income, bs="cs") +
s(education, bs="cs"), data=Prestige)

gam4 <- gam(prestige ~ s(income, bs="ts") +
s(education, bs="ts"), data=Prestige)

plot(gam1, select=1, ylim=c(-25,30))
par(new=T)
plot(gam2, select=1, col="red",

ylim=c(-25,30), xlab="", ylab="")
par(new=T)
plot(gam3, select=1, col="blue",

ylim=c(-25,30), xlab="", ylab="")
par(new=T)
plot(gam4, select=1, col="green",

ylim=c(-25,30), xlab="", ylab="")
legend("topleft", c("Thin Plate", "Cubic Spline",

"Cubic Spline (shrinkage)", "Thin Plate (shirnkage)"),
lty=c(1,1,1,1), col=c("black", "red", "blue", "green"), inset=.01)

63 / 84

Plot

0 5000 10000 15000 20000 25000

−2
0

−1
0

0
10

20
30

income

s(
in

co
m

e,
3.

12
)

0 5000 10000 15000 20000 25000

−2
0

−1
0

0
10

20
30

0 5000 10000 15000 20000 25000

−2
0

−1
0

0
10

20
30

0 5000 10000 15000 20000 25000

−2
0

−1
0

0
10

20
30 Thin Plate

Cubic Spline
Cubic Spline (shrinkage)
Thin Plate (shirnkage)

64 / 84

E↵ect of Education and Income

plot(prestige.gam, select=1)

plot(prestige.gam, select=2)

0 5000 10000 15000 20000 25000

−2
0

−1
0

0
10

20

income

s(
in
co
m
e,
3.
12
)

6 8 10 12 14 16

−2
0

−1
0

0
10

20

education

s(
ed
uc
at
io
n,
3.
18
)

65 / 84

Interpreting the E↵ects

• A plot of X j versus sj (X j) shows the relationship between X j and
Y holding constant the other variables in the model

• Since Y is expressed in mean deviation form, the smooth term
sj (X j) is also centered and thus each plot represents how Y

changes relative to its mean with changes in X

• The value of 0 on the Y -axis is the mean of Y
• As the line moves away from 0 in a negative direction we subtract

the distance from the mean when determining the fitted value. For
example, if the mean is 45 and for a particular X -value (say x=15)
the curve is at sj (X j) = 4, this means the fitted value of Y
controlling for all other explanatory variables is 45+4=9

• If there are several nonparametric relationships, we can add
together the e↵ects on the two graphs for any particular
observation to find its fitted value of Y

66 / 84

Interpreting the E↵ects (2)

5000 10000 15000 20000 25000

−2
0

−1
0

0
10

20

Income=10000

income

s(
in

co
m

e,
3.

08
)

●

(10 000,6)

6 8 10 12 14 16

−2
0

−1
0

0
10

20

Education=10

education

s(
ed
uc
at
io
n,
3)

●

(10,−5)

• The mean of prestige is 47.3. Therefore, the fitted value for an
occupation with average income of $10000/year and 10 years of
education is on average: 47.3+6-5=48.3 67 / 84

Residual Sum of Squares

• As was the case for smoothing splines and lowess smooths,
statistical inference and hypothesis testing is based on the
residual sum of squares (or deviance in the case of generalized
additive models) and the degrees of freedom

• the RSS for an additive model is easily defined in the usual
manner:

RSS =
N
’

i=1
(�i � �̂i)2

• the approximate degrees of freedom, however, need to be
adjusted from the regular nonparametric case, however, because
we are no longer specifying a jointly-conditional functional form

68 / 84

Degrees of Freedom

• Recall that for nonparametric regression, the approximate d f are
equal to the trace of the smoother matrix (the matrix that
projects Y on to Ŷ

• We extend this to additive models:

d fj = trace(S) � 1

1 is subtracted from each d f reflecting the constant that each
partial regression function sums to zero (the individual intercepts
have been removed)

• Parametric terms entered in the model each occupy a single
degree of freedom as in the linear regression case

• the individual degrees of freedom are then combined for a single
measure:

d fmod =

k
’

j=1
d fj + 1

1 is added to the final degrees of freedom to account for the
overall constant in the model

69 / 84

Specifying Degrees of Freedom

• We can set either the degrees of freedom or the smoothing
parameter �

• Also, like with smoothing splines, generalized cross-validation
can be used to specify degrees of freedom

• Recall that this finds the smoothing parameter that gives the
lowest average MSE from the cross-validation samples

• Cross-validation is implemented using the mgcv package in R

> Prestige.gam2 <- gam(prestige ~ te(income, k=7,

fx=TRUE) + te(education), data=Prestige)

• We specify the number of degrees of freedom with k and specify
fx=TRUE else GCV will be used

70 / 84

Cautions about Statistical tests when � is chosen using GCV

• If the smoothing parameters �’s (or equivalently, the degrees of
freedom) are chosen using GCV, caution must be used when
employing analysis of deviance

• If a variable is added or removed from the model, the smoothing
parameter � that yields the smallest MSE will likely also change

• By implication, the degrees of freedom also change implying that
the equivalent number of parameters used for the model is di↵erent

• In other words, the test will only be approximate because the
otherwise nested models have di↵erent degrees of freedom
associated with �

• As a result, it is advisable to fix the degrees of freedom when
computing models

71 / 84

Testing for Linearity

• We can compare the linear model of prestige regressed on income
and education with the additive model by carrying out an
incremental F -test
prestige.ols<-gam(prestige~income+education, data=Prestige)
anova(prestige.ols, prestige.gam, test="F")

Analysis of Deviance Table
##
Model 1: prestige ~ income + education
Model 2: prestige ~ s(income) + s(education)
Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 99.000 6038.9
2 93.171 4585.0 5.8293 1453.9 5.1516 0.0001513 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• The di↵erence between the models is statistically significant - the
additive model describes the relationship between prestige and
education and income much better

72 / 84

Testing for Additivity of Smooth

• We can test for additivity of a smooth by using the ti function
to make the smooths:

prestige.add <- gam(prestige ~ ti(income) + ti(education), data=Prestige)
prestige.mult <- gam(prestige ~ ti(income) + ti(education) +

ti(income, education), data=Prestige)
anova(prestige.add, prestige.mult, test="F")

Analysis of Deviance Table
##
Model 1: prestige ~ ti(income) + ti(education)
Model 2: prestige ~ ti(income) + ti(education) + ti(income, education)
Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 94.324 4569.4
2 92.994 4369.3 1.3302 200.16 3.2446 0.06277 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

73 / 84

Back to the GDP data

dat <- read.dta(
"http://www.quantoid.net/files/reg3/gdp_data_2000.dta")

rawlm <- lm(log(rgdpna_pc) ~ polity2 + primsch_enroll_pc +
pop_c100k_pc, data=dat)

summary(rawlm)

##
Call:
lm(formula = log(rgdpna_pc) ~ polity2 + primsch_enroll_pc + pop_c100k_pc,
data = dat)
##
Residuals:
Min 1Q Median 3Q Max
-2.66283 -0.62070 0.03893 0.58882 2.98972
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.0550272 0.2970106 30.487 < 2e-16 ***
polity2 0.0415854 0.0142745 2.913 0.00416 **
primsch_enroll_pc -0.0004229 0.0000958 -4.414 2.01e-05 ***
pop_c100k_pc 0.0021669 0.0004590 4.721 5.64e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.06 on 140 degrees of freedom
Multiple R-squared: 0.3198,Adjusted R-squared: 0.3052
F-statistic: 21.94 on 3 and 140 DF, p-value: 1.054e-11

74 / 84

GAM of GDP

library(mgcv)
gam.gdp <- gam(log(rgdpna_pc) ~ s(polity2, bs="cs") + primsch_enroll_pc +

s(pop_c100k_pc, bs="cs"), data=dat)
summary(gam.gdp)

##
Family: gaussian
Link function: identity
##
Formula:
log(rgdpna_pc) ~ s(polity2, bs = "cs") + primsch_enroll_pc +
s(pop_c100k_pc, bs = "cs")
##
Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.345e+00 1.913e-01 48.85 < 2e-16 ***
primsch_enroll_pc -2.121e-04 7.657e-05 -2.77 0.00642 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Approximate significance of smooth terms:
edf Ref.df F p-value
s(polity2) 5.506 9 14.244 < 2e-16 ***
s(pop_c100k_pc) 6.226 9 4.825 3.31e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
R-sq.(adj) = 0.635 Deviance explained = 66.7%
GCV = 0.65305 Scale est. = 0.59078 n = 144

75 / 84

Test of models

anova(rawlm, gam.gdp)

Analysis of Variance Table
##
Model 1: log(rgdpna_pc) ~ polity2 + primsch_enroll_pc + pop_c100k_pc
Model 2: log(rgdpna_pc) ~ s(polity2, bs = "cs") + primsch_enroll_pc +
s(pop_c100k_pc, bs = "cs")
Res.Df RSS Df Sum of Sq F Pr(>F)
1 140.00 157.25
2 130.27 76.96 9.7313 80.293 13.966 2.9e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

76 / 84

Testing Urban Population

library(splines)
lm.mod <- lm(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +

bs(pop_c100k_pc, df=8), data=dat)
gam.mod <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +

s(pop_c100k_pc, bs="cs", k=9), data=dat)
anova(lm.mod, gam.mod)

Analysis of Variance Table
##
Model 1: log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc + bs(pop_c100k_pc,
df = 8)
Model 2: log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc + s(pop_c100k_pc,
bs = "cs", k = 9)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 132.00 78.409
2 133.67 82.811 -1.6664 -4.4025 4.4475 0.01882 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

77 / 84

Testing Polity2

gam.mod2 <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +
s(pop_c100k_pc, k=9, fx=T), data=dat)

gam.mod2a <- gam(log(rgdpna_pc) ~ s(polity2, bs="cs") + primsch_enroll_pc +
s(pop_c100k_pc, k=9, fx=T), data=dat)

anova(gam.mod2, gam.mod2a, test='F')

Analysis of Deviance Table
##
Model 1: log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc + s(pop_c100k_pc,
k = 9, fx = T)
Model 2: log(rgdpna_pc) ~ s(polity2, bs = "cs") + primsch_enroll_pc +
s(pop_c100k_pc, k = 9, fx = T)
Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 132.00 80.942
2 127.29 75.960 4.7136 4.9825 1.7858 0.1245

78 / 84

Problems with Data Sparsity

The urban population variable exhibits a couple of di↵erent problems
with sparsity in the data. First, there are 8 countries with values of 0,
then the next smallest value is 31. There are also 6 values tha range
from 726-996.

• Splines (and any flexible function) still have a chance to overfit
data in sparse regions.

• Normalizing transformations could help pull in big outliers on
the high end.

Let’s try out a couple of other things with the population variable.

79 / 84

Di↵erent Spline Functions

gam.pop1 <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +
s(pop_c100k_pc, k=9, bs="cs"), data=dat)

gam.pop2 <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +
s(pop_c100k_pc, k=9, bs="ts"), data=dat)

Now, transforming urban population with a Y-J normalization

pt1 <- powerTransform(pop_c100k_pc ~ 1, data=dat, family="yjPower")
gam.pop1a <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +

s(VGAM:::yeo.johnson(pop_c100k_pc, 0.5), k=9, bs="cs"), data=dat)
gam.pop2a <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +

s(VGAM:::yeo.johnson(pop_c100k_pc, 0.5), k=9, bs="ts"), data=dat)

Finally, transforming urban population with a BCn normalizatiopn

pt2 <- powerTransform(pop_c100k_pc ~ 1, data=dat, family="bcnPower")
gam.pop1b <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +

s(car:::bcnPower(pop_c100k_pc, lambda=0.5, gamma=49.8),
k=9, bs="cs"), data=dat)

gam.pop2b <- gam(log(rgdpna_pc) ~ poly(polity2, 2) + primsch_enroll_pc +
s(car:::bcnPower(pop_c100k_pc, lambda=0.5, gamma=49.8),

k=9, bs="ts"), data=dat)

80 / 84

Plots of Di↵erent Smoothers

newdat <- data.frame(
pop_c100k_pc = seq(0,996, length=100),
primsch_enroll_pc = mean(dat$primsch_enroll_pc, na.rm=T),
polity2 = 0)

pred1 <- predict(gam.pop1, newdata=newdat, se.fit=T)
pred1a <- predict(gam.pop1a, newdata=newdat, se.fit=T)
pred1b <- predict(gam.pop1b, newdata=newdat, se.fit=T)
pred2 <- predict(gam.pop2, newdata=newdat, se.fit=T)
pred2a <- predict(gam.pop2a, newdata=newdat, se.fit=T)
pred2b <- predict(gam.pop2b, newdata=newdat, se.fit=T)

plot.dat <- data.frame(
urbanpop = rep(newdat$pop_c100k_pc, 6),
fit = c(pred1$fit, pred1a$fit, pred1b$fit,

pred2$fit, pred2a$fit, pred2b$fit),
se = c(pred1$se.fit, pred1a$se.fit, pred1b$se.fit,

pred2$se.fit, pred2a$se.fit, pred2b$se.fit),
spline = as.factor(rep(c("Cubic", "Thin Plate"), each=300)),
transform = factor(rep(c("None", "YJ", "BCN"), each=100),

levels=c("None", "YJ", "BCN"))
)
plot.dat$lower <- plot.dat$fit - 1.96*plot.dat$se
plot.dat$upper <- plot.dat$fit + 1.96*plot.dat$se

81 / 84

Plots of Di↵erent Smoothers
library(DAMisc)
library(latticeExtra)
useOuterStrips(xyplot(fit ~ urbanpop | transform + spline, data=plot.dat,

panel=panel.ci, prepanel=prepanel.ci, zl=0, lower=plot.dat$lower,
upper=plot.dat$upper))

urbanpop

fit

6

7

8

9

10

11

0 200 400 600 800 1000

C
ub

ic

0 200 400 600 800 1000

None

Th
in

 P
la

te

0 200 400 600 800 1000

YJ

6

7

8

9

10

11
BCN

82 / 84

Plots of Predictions

−10 −5 0 5 10

7
8

9
10

Polity2

Pr
ed

ic
te

d
Va

lu
es

Polynomial
Smoothing Spline

0 200 400 600 800 1000

7
8

9
10

11
12

Population Living in Cities > 100k

Pr
ed

ic
te

d
Va

lu
es

B−spline
Smoothing Spline

83 / 84

Conclusions

• Splines (smoothing and otherwise) can be good at finding
arbitrary structure in data.

• Smoothing splines (and by extension, GAMs) prevent overfitting
through “regularization”.

• Interpreting spline models must be done graphically.

84 / 84

