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What do we Mean by ‘Model Selection’

• Testing competing models against each other (i.e., relative fit).
• Nested model tests
• Non-nested model tests

• Feature Selection
• Which variables (features) of the data are important to predict

the outcome?
• Focus here is often on parsimony

• Multi-model inference
• How to deal with model selection uncertainty in a principled way.
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Options for Comparative Model Fit

• Direct tests of nested models - F (ANOVA), �2 (Analysis of
Deviance, LR-Test)

• Information Criteria measures (e.g., AIC and BIC)

• Tests for Non-nested Models (e.g., Clarke and Vuong)
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Nested Model Tests

Tests like the LR test and F-test require nested models because,

• They are considering the di↵erent between two statistics (RSS or
LR)

• This di↵erence follows an F or �

2 distribution under the null
(neither distribution permits negative values).

• So, the model with more parameters must provide a fit not worse
than the model with fewer parameters.

• The only way to ensure this is the case is to ensure that the
models are nested
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Likelihood Ratio Test

The LR Test uses the statistic defined by the di↵erence in the
log-likelihoods of the models.

LR = �2 (llrestricted � llunrestricted) ⇠ �

2
p�q (1)

where there are p parameters in the unrestricted model and q

parameters in the restricted model.

• The distribution is asymptotically right, but will not be exactly
�

2 in finite samples.

• Deviance is often taken as �2llmodel, though this is not always
the case (take, for example, the linear model case).
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Information Theory

• Information theorists believe in reality, but not in the notion of
“true” models.

• Models are necessarily simplified constructions that try to
approximate reality.

• There is more information in large datasets than small.

• Information amounts to the ability to identify interesting, though
substantively small e↵ects
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Three Principles guiding Model-based Inference

1. Parsimony

• Encapsulates the bias-variance tradeo↵.

2. Multiple Working Hypotheses
• There is no single null hypothesis against which an alternative is

to be tested.
• rather, there is a (small-ish) set, well-specified and theoretically

derived working hypotheses.

3. Strength of Evidence

• We must be able to quantify the “strength of evidence” supporting
various working hypotheses if science is to progress in the usual
way.
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K-L Information

Kullback and Leibler (1951) quantified the meaning of “information”.

I (f ,�) =
π

f (x)lo�
✓
f (x)
�(x |� )

◆
dx

where:

•
f denotes a fixed (i.e., constant) reality (reality is non-parametric
[i.e., it has no parameters])

•
� is a model approximating f with parameters � .

•
I (f ,�) is the information lost when using � to approximate f .

There is no assumption that a true model exists (much less that the
true model is in our candidate set of models) nor is there an
assumption that the models are nested.
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Expected Information

We cannot use I (f ,�) in model selection because it requires knowledge
of f and � the parameters in �.

I (f ,�) = Ef [lo�(f (x))] � Ef [lo�(�(x |� ))]
= C � Ef [lo�(�(x |� ))]

Estimating relative information for each model in the set results in
our ability to compare across models (since C is constant for all model
comparisons).
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Akaike’s Information Criterion (AIC)

The goal was to estimate: E�Ex
h
lo�(�(x |�̂ (�)))

i
, essentially the relative

information with � replaced with the MLE estimates �̂ .

• Akaike found that lo�(L(�̂ |data)) was a biased estimator of

E�Ex

h
lo�(�(x |�̂ (�)))

i
, but that asymptotically the bias is

approximately equal to K , the number of parameters in �̂ . Thus,

lo�(L(�̂ |data)) � K = C � Ê�̂ [I (f , �̂)]
K is not arbitrary, but chosen to minimize bias in the estimated
expected information.

AIC = �2(lo�(L(�̂ |data)) � K)
= �2lo�(L(�̂ |data)) + 2K
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Small-sample Correction

When K is large relative to n or for any value of K for small-n, there is
a correction to AIC.

AICc = �2lo�(L(�̂ |data)) + 2K + 2K(K + 1)
n � K � 1

• This should be used probably always, but especially if n/K  40
for the largest K in the model set.

•
AICc converges to AIC as n ! 1.
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�i values

Often, for AICc or AIC to be interpretable, �i should be calculated
such that for each model i in the model set,

�i = AICi �AICmin

This gives the “best” model �i = 0

• This captures the information loss due to using model �i rather
than the best model, �min .

• The large �i , the less likely model i is the best approximation of
reality f .

Conventional cut-o↵ values for �i are:

• �i  2 indicates substantial support,

• 4  �i  7 indicates less support,

• �i � 10 indicates essentially no support.
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BIC

The BIC is defined as:

BIC = �2 log(L) + K log(n)

• BIC is not technically based in “information theory” and as such
is not an information criterion measure.

• The BIC is meant to approximate the Bayes Factor (or rather its
log):

Pr(D |M1)
Pr(D |M2)

=

Ø
Pr(�1 |M1)Pr(D |�1,M1)d�1Ø
Pr(�2 |M2)Pr(D |�2,M2)d�2

• Models need not be nested and we need not appeal to the idea
that there exists a “true” model, much less that the true model is
in our set of candidate models.
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AIC or BIC

The question of whether to use AIC or BIC is often left to how much
you want to penalize additional model parameters. In actuality, the
question is one of performance in picking the K-L best model.

• When there are “tapering e↵ects”, AIC is better

• When reality is simple with a few big e↵ects captured by the
highest posterior probability models, then BIC is often better.
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Likelihood-based Tests

There are a number of tests that are based on the Likelihoods of the
two models.

• Vuong Test

• Clarke Test
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Vuong Test

The Vuong test is a likelihood ratio test specified as follows:

L̃Rn(�̂n , �̂n) = log(L1) � log(L2) �
k1 � k2

2
logn

This statistic has a standard normal distribution under the null
hypothesis that the two models are not di↵erent from each other.
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Distribution Free Test

Clarke (2003) puts forth a distribution-free test that is really a
“paired sign test”. The statistic is calculated as:

di = log(L�,xi ) � log(L� ,zi ) + (p � q)
✓
lo�(n)
2n

◆

B =

n’
i=1

I0,+1(di )

• The di are the di↵erence in individual log-likelihoods for the two
models

• The second equation above counts up the number of positive di
values.

• We are testing to see whether B is significantly bigger than a
random binomial variable that has a p = .5 and n the same as the
number of rows in X and Z .
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Examples in R

You can produce AIC, AICc and BIC in the following ways:

library(car)
data(Prestige)
mod1 <- lm(prestige ~ income + women,

data=na.omit(Prestige), y=T)
mod2 <- lm(prestige ~ education + type + women,

data=na.omit(Prestige), y=T)
AIC(mod1)

## [1] 763.8879

library(AICcmodavg)
AICc(mod1)

## [1] 764.318

BIC(mod1)

## [1] 774.2278
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Vuong and Clarke Tests in R

library(games)
vuong(mod1, mod2)

##
## Vuong test for non-nested models
##
## Model 1 log-likelihood: -378
## Model 2 log-likelihood: -336
## Observations: 98
## Test statistic: -3.6
##
## Model 2 is preferred (p = 0.00034)

clarke(mod1, mod2)

##
## Clarke test for non-nested models
##
## Model 1 log-likelihood: -378
## Model 2 log-likelihood: -336
## Observations: 98
## Test statistic: 24 (24%)
##
## Model 2 is preferred (p = 4.2e-07)
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Shrinkage Estimators

Shrinkage estimators can reduce sampling variability and sometimes
improve model fit (particularly in the presence of collinearity).

• Shrinkage estimators impose constraints on the fitted model
(particularly on the size of the coe�cients).

• The result of these constraints is to shrink the estimates toward
zero.

• Ridge Regression and the LASSO are the two most prominent
shrinkage estimators.

NB: these are biased estimators, so they might be good for stabilizing
predictions, but they won’t be particularly good for more
conventional theory testing.
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Ridge Regression

Ridge Regression minimizes the following function:

N’
i=1

 
�i � �0 +

p’
j=1

�jxi j

!2
+ �

p’
j=1

�

2
j

•
� is a tuning parameter that governs the relative impact on RSS
and the penalty on the regression model.

• As � ! 0, the estimates get increasingly close to the OLS
estimates.

• As � ! 1, the estimates get increasingly close to zero.

The choice of � is important and is often done with cross-validation.
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CV with Ridge Regression

library(DAMisc)
library(parcor)
library(readstata13)
banks99 <- read.dta13(

"http://quantoid.net/files/reg3/banks99.dta")
banks99s <- scaleDataFrame(banks99[,-c(1,2,4)])
X <- model.matrix(gdppc_mp ~. , data=banks99s)[,-1]
y <- model.response(model.frame(gdppc_mp ~. , data=banks99s))
rcv <- ridge.cv(X,y)
mod <- lm(y ~ X)
rat <- with(rcv, c(intercept, coefficients))/coef(mod)
names(rat) <- gsub("X", "", names(rat))
library(lattice)
dotplot(sort(rat), col="black")
trellis.focus("panel", 1, 1)
panel.abline(v=0, lty=2, col="gray65")
panel.abline(v=c(-1,1), lty=3, col="gray75")
trellis.unfocus()

22 / 60

Plot

sort(rat)
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LASSO (the L1 norm)

The LASSO (Least Absolute Shrinkage and Selection Operator) is
another regularization method for estimating regression.

• Uses a di↵erent penalty than ridge regression:

N’
i=1

 
�i � �0 +

p’
j=1

�jxi j

!2
+ �

p’
j=1

|�j | (2)

• Doesn’t necessarily use all of the variables (i.e., some coe�cients
could be zero)

• Since not all variables are used in each fit, bootstrapping is more
problematic here (though not impossible).
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The LASSO in R

library(glmnet)
g <- glmnet(X, y)
cvg <- cv.glmnet(X,y)
round(cbind(coef(cvg), coef(mod)), 4)

## 21 x 2 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 0.0000 0.0000
## under5_mort . 0.0214
## area_km2 . 0.1365
## inet_hosts_pc 0.0558 -0.0032
## inet_users_pc 0.0956 0.1813
## enprod_kgcoal_pc . 0.2801
## encons_kgcoal_pc 0.0457 -0.2730
## elec_prod_kwh_pc . 0.1422
## cement_prod_pc . 0.0073
## nseats_largest_party_leg 0.0018 0.1520
## eff_leg . -0.0026
## pct_seats_largest_party . 0.0250
## radios_pc . 0.0140
## tvs_pc . -0.0025
## newspapers_pc . -0.0930
## polity2 . 0.0765
## parl_resp . -0.0853
## popdens . 0.0607
## imports_pc 0.1874 0.2825
## exports_pc 0.0714 0.1673
## all_veh_pc 0.4862 0.5060
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Correlation of Predictions

tmp <- data.frame(
ridge = c(cbind(1, X) %*% with(rcv,

c(intercept, coefficients))),
lasso = c(cbind(1, X) %*% as.matrix(coef(cvg))),
ols = fitted(mod)

)
round(cor(tmp), 4)

## ridge lasso ols
## ridge 1.0000 0.9862 0.9906
## lasso 0.9862 1.0000 0.9789
## ols 0.9906 0.9789 1.0000
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Adaptive Lasso

The lasso gives all variables the same penalty (�). The adaptive lasso
relaxes this assumption by allowing each parameter to have a
di↵erent weight:

argmin
�

������ �
p’
j�1

x j�j

�����
2

+ �

p’
j=1

w j |�j |

Where we use results from an auxiliary regression (OLS, Ridge or
LASSO) to make the weights:

ŵ j =
1

|�̂j |�

� is not usually estimated, but values 0.5, 1, and 2 are tried to
evaluate sensitivity. The only technical constraint is that � > 0.
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Oracle Property

The Adaptive Lasso has been shown to have the Oracle property, that
the selection procedure asymptotically chooses the right model:

• True 0 coe�cients are estimated as 0 with probability that tends
toward 1

• True non-zero coe�cients are estimated as if the true sub-model
were known.
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Steps for Adaptive LASSO

1. Estimate the initial coe�cients via regression model (OLS, Ridge
or LASSO).

2. Calculate the weights w j =
1

|�j |� � = {0.5, 1, 2}.
3. Use the weights as input to the LASSO routine.
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Adaptive LASSO example

# estimate initial ridge regression and save coefficients
b.ridge <- coef(ridge.cv(X,y))
# calculate weights
gamma <- 1
w <- 1/(abs(b.ridge)^gamma)
# estimate the LASSO with the weights
cvg <- cv.glmnet(X,y, penalty.factor=w)
coef(cvg)

## 21 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) -4.321919e-17
## under5_mort .
## area_km2 .
## inet_hosts_pc .
## inet_users_pc .
## enprod_kgcoal_pc .
## encons_kgcoal_pc .
## elec_prod_kwh_pc .
## cement_prod_pc .
## nseats_largest_party_leg .
## eff_leg .
## pct_seats_largest_party .
## radios_pc .
## tvs_pc .
## newspapers_pc .
## polity2 .
## parl_resp .
## popdens .
## imports_pc 2.078042e-01
## exports_pc 2.980630e-03
## all_veh_pc 5.881630e-01
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Four Most Important Variables

Variable Ridge Lasso Adaptive Lasso
Internet Users/capita 0.100 0.111 0.000
Energy Consumption 0.099 0.024 0.000
Imports/capita 0.169 0.199 0.201
Vehicles/capita 0.172 0.485 0.556
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Inference After Selection

Inference gets much more complicated after model selection, given
that variables are often selected because they are significant
predictors. There are a few options for post-selection inference.

• Data Splitting - Split the sample into two halves - select on one
set, test on the other. Most conserative (loss of power due to
lower N).

• Data Carving - A small proportion of the sample is witheld from
training and then the entire sample is used for testing Fithian,
Sun and Taylor (2014).

• Exact post-selection inference possible for Forward Selection
Regression and LASSO with fixed � (Tibshirani et al. 2014,
SelectiveInferecen package in R).

• Valid post-selection inference for Linear LS Models (Berk et al.
2013, implemented in the PoSI package in R).
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Variable Selection Methods: Cautions (1)

• If we have a very large number of predictors and we simply want
a parsimonious predictive model, subset methods and the lasso
could be really useful.

• When tackling collinearity, however, variable selection may
results in a re-specified model that does not address the original
research question (ridge regression could help).

• If the original model is correctly specified, then coe�cient
estimates following variable selection are biased. However, the bias
may not be overwhelming if you started o↵ with a severe
collinearity problem
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Variable Selection Methods: Cautions (2)

• If our goal is to assess the individual predictors (or their relative
impacts), variable selection models have serious implications

• Standard errors calculated following variable selection overstate
the precision of results - they do not control for relevant predictors
and they do not account for model selection unertainty.

• A new sample may give di↵erent results, leading to inconsistent
interpretation of “e↵ects”

• These models, again, are really about prediction not hypothesis
testing, though the can still be quite valuable.
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Multivariate Adaptive Regression Splines (MARS)

The main component of MARS is a pair of piecewise linear (hinge)
splines.

(x � t)+ =
⇢
x � t if x > t

0 otherwise.

(t � x)+ =
⇢
t � x if x < t

0 otherwise.

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

x

h1
(x

, 0
)

(x−t)+
(t−x)+
1
2
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MARS Notation

MARS takes the form:

f (x) = �0 +

M’
m=1

�mhm(x)

where hm is the pair of hinge functions.
Computationally:

1. Forward pass - add pairs of hinge functions by reduction in
SSRes until all pairs are in.

2. Backward pass - take individual functions out by min increase in
SSRes until GCV criterion is satisfied.
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Interactions

• The degree parameter in the R algorithm controls the degree of
interaction you want to allow.

• This can make the model really complicated because it’s
expanding all possible interactions among hinge functions and
then pulling them out on the backward pass step.

• This model is more easily constrained (particular w.r.t additivity)
than the other models we talked about before.

• You can also identify variables that will enter the model linearly
if they enter the model at all .
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MARS in R

The MARS algorithm is licensed by Salford Systems, so to avoid
trademark infringements, other implementations of the MARS
algorithm are called “Earth”.

set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[ ,1] * X[,2]) +20 *

(X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
df <- as.data.frame(cbind(X,y))
library(earth)
e1 <- earth(X,y, nfold=10, ncross=10, pmethod="cv", degree=2)

38 / 60

Earth Summary

summary(e1)

## Call: earth(x=X, y=y, pmethod="cv", degree=2, nfold=10, ncross=10)
##
## coefficients
## (Intercept) 20.522999
## h(0.502856-X1) -20.213453
## h(X1-0.502856) 23.381319
## h(0.761508-X2) -19.661064
## h(X2-0.761508) 6.144417
## h(0.40403-X3) 12.491871
## h(X3-0.40403) 3.818608
## h(X3-0.799209) 11.158226
## h(0.932184-X4) -10.570805
## h(0.218507-X5) -6.047004
## h(X5-0.218507) 5.190464
## h(X1-0.502856) * h(X2-0.419717) -78.008484
## h(0.764608-X1) * h(0.761508-X2) 25.825215
## h(X1-0.764608) * h(0.761508-X2) -42.362823
## h(X3-0.48401) * h(0.932184-X4) 4.023197
##
## Selected 15 of 19 terms, and 5 of 5 predictors using pmethod="cv"
## Termination condition: Reached nk 21
## Importance: X4, X1, X2, X3, X5
## Number of terms at each degree of interaction: 1 10 4
## GRSq 0.9389959 RSq 0.9585675 mean.oof.RSq 0.9316501 (sd 0.0258)
##
## pmethod="backward" would have selected the same model:
## 15 terms 5 preds, GRSq 0.9389959 RSq 0.9585675 mean.oof.RSq 0.9316501
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Visualizing Partial E↵ects: Partial Dependence Plot

The PDP plots the change in the average predicted value for a subset
of features S, averaged over the subset of features C, where C is the
complement of S. Formally:

fS = ExC [f (xS ,xC )] =
π

f (xS ,xC )dP(xC )

In words: we are predicting f () with the variables in S averaged over
all of the variables in C.
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Visualizing Partial E↵ects: Individual Conditional Expectation Plots

ICE disaggregates the PDP.

• The PDP is obtained by averaging over all of the ICE curves.

• Plots N di↵erent curves to enable evaluation of e↵ect
heterogeneity.

• Heterogeneity essentially means interactions with variables in C.

fSi = ExCi
⇥
f (xS ,xCi )

⇤
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Dependence Plots

library(RColorBrewer)
cols <- brewer.pal(5, "Set1")
library(pdp)
ep1 <- partial(e1, train=X, pred.var="X1")
plotPartial(ep1)

library(ICEbox)
ep2 <- ice(e1, X=X, y=y, predictor="X1")
clusterICE(ep2, nClusters=5, plot_legend=TRUE,

colorvec=cols)
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Variance Models

• You can’t get confidence intervals from these models because
they don’t take into account the selection mechanism.

• MARS picks values essentially because they are good predictors,
so the items in the model will necessarily have small p-values.

• You can get prediction intervals for the - essentially the
variability in future observations predicted by the model.

• The varmod.method allows you to model the residual variance by
modeling the absolute value of the residuals as a function of the
fitted values.

• Prediction variance is:

�

2
i,f uture =

(�i � �̂i )2
(1 � hii )

+ modvari
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Prediction Variances in earth

library(mgcv)
e2 <- earth(X,y, nfold=10, ncross=10, pmethod="cv",

degree=2, varmod.meth="gam")
plotmo(e2, pt.col=1, level=.95)

## plotmo grid: X1 X2 X3 X4 X5
## 0.4392563 0.5140201 0.4955242 0.5069235 0.489479
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earth(x=X, y=y, pmethod="cv", degree=2, nfold=10, ncross=10, varmod.method="gam")
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Polywog

Polywog is a method developed by Kenkel and Signorino which puts
two pieces we’ve already considered together:

• Polynomial expansion: If the degree = 3 and we have variablex
{x1,x2} in our model, then the following terms would be included
in the expansion: x1,x2,x21 ,x

2
2 ,x

3
1 ,x

3
2 ,x1x2,x

2
1x2,x

2
2x1.

• Adaptive Lasso: We use the adaptive LASSO to figure out which
of the polynomial expansion terms to keep in the model.
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Polywog Example

library(polywog)

p1 <- polywog(y ~ ., data=df)
sort(coef(p1)[-which(coef(p1) == 0)])

## X1^2.X2 X1.X2^2 X3 X1 X2 X1^3
## -47.0104592 -40.0255071 -24.9238963 -17.1414326 -10.3280139 -8.1871101
## X1.X3.X5 X2.X5^2 X2.X4.X5 X4^2.X5 X3^2.X4 X3.X4^2
## -7.3665685 -4.3513901 -3.4855783 -2.7964654 -2.1900846 -0.7751271
## X1.X4 X3^2.X5 X5^3 X1.X5 X3.X4 X1.X4.X5
## -0.3598642 -0.2350903 0.9536742 1.2582594 1.6079199 1.7908432
## X3.X5 X5^2 X4.X5 X2.X5 X2.X3.X5 X1.X3
## 2.7541044 2.9716099 3.4330804 3.9552448 4.0553543 4.2489761
## X2^2 (Intercept) X4 X3^2 X1^2 X1.X2
## 8.1053866 8.9033528 10.6006623 22.7082379 23.4724665 87.4183701
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ICEPlot for Polywog

pice <- ice(p1, X, y, predictor="X3")
clusterICE(pice, nClusters=5, plot_legend=T, colorvec=cols)
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library(readstata13)
banks <- read.dta13("http://quantoid.net/files/reg3/banks99.dta")
banks.dat <- banks[,-c(1,2,4,5)]
banks.X <- model.matrix(gdppc_mp ~ ., data=banks.dat)[,-1]
banks.y <- log(model.response(model.frame(gdppc_mp~ ., data=banks.dat)))
e3 <- earth(banks.X, banks.y, nfold=10, ncross=5,

degree=2, pmethod="cv")
summary(e3)

## Call: earth(x=banks.X, y=banks.y, pmethod="cv", degree=2, nfold=10,
## ncross=5)
##
## coefficients
## (Intercept) 7.6896487
## h(3902-cement_prod_pc) -0.0003636
## h(7751-all_veh_pc) -0.0001305
## h(all_veh_pc-7751) 0.0000299
## exports_pc * h(all_veh_pc-7751) 0.0000000
##
## Selected 5 of 16 terms, and 3 of 19 predictors using pmethod="cv"
## Termination condition: GRSq -Inf at 16 terms
## Importance: all_veh_pc, cement_prod_pc, exports_pc, ...
## Number of terms at each degree of interaction: 1 3 1
## GRSq 0.9227393 RSq 0.9551502 mean.oof.RSq 0.7672082 (sd 0.41)
##
## pmethod="backward" would have selected:
## 8 terms 7 preds, GRSq 0.9337144 RSq 0.9774445 mean.oof.RSq 0.4573622
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ICE Plot

i3 <- ice(e3, X=banks.X, y=banks.y, predictor="all_veh_pc")
clusterICE(i3, nClusters=5, plot_legend=TRUE,

colorvec=cols)
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Example: GDP Data

What do we want to know?

• Earlier we saw that polity2 had a quadratic relationship with one
lo�(gdp/capita).

• Is that “robust”? Does the additive, quadratic form really
represent that relationship well?

• We can use the tools we developed today to figure that out.

• Note, we are not using these tools to their greatest advantage
because we have small data (both in n and k).

• Puts us in a less good position than we might otherwise be
regarding inference. In truly BIG data, inference is unnecessary
(everything would be significant).
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Models

library(earth)
library(polywog)
library(foreign)
dat <- read.dta("http://quantoid.net/files/reg3/gdp_data_2000.dta")
Xm <- model.matrix(log(rgdpna_pc) ~ ., data=dat)[,-1]
X <- as.data.frame(Xm)
y <- model.response(model.frame(log(rgdpna_pc) ~ ., data=dat))
m5 <- earth(log(rgdpna_pc) ~ ., data=dat, pmethod="cv", ncross=10, nfold=10, degree=3)
m6 <- polywog(log(rgdpna_pc) ~ primsch_enroll_pc + polity2 +

pop_c100k_pc, data=dat, degree=3)
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In-sample Predictive Accuracy

preds <- cbind(
c(predict(m5, newdata=X)),
predict(m6, newdata=X)

)
colnames(preds) <- c("MARS", "PWOG")
cor(preds, y)^2

## [,1]
## MARS 0.6970951
## PWOG 0.6011428
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Partial Dependence Plots

plotPartial(partial(m5, train=X, pred.var="polity2"))

plotPartial(partial(m6, X=X, pred.var="polity2",
type="regression"))
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ICE Plots

clusterICE(ice(m5, X=X, y=y, predictor="polity2"),
plot_legend=T, colorvec=cols, nClusters=5)

clusterICE(ice(m6, X=X, y=y, predictor="polity2"),
plot_legend=T, colorvec=cols, nClusters=5)
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Plots
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Compatability with Quadratic Form

library(splines)
library(effects)
lm.mod <- lm(log(rgdpna_pc) ~ poly(polity2, 2, raw=TRUE) +

bs(pop_c100k_pc, df=8) + primsch_enroll_pc, data=dat)
eff <- effect("poly(polity2, 2, raw=TRUE)", lm.mod, xlevels=21)
plotPartial(partial(m5, train=X, pred.var="polity2"))
trellis.focus("panel", 1, 1)
panel.lines(eff$x$polity2, eff$fit, col="red", lwd=2)
trellis.unfocus()

plotPartial(partial(m6, X=X, pred.var="polity2",
type="regression"))

trellis.focus("panel", 1, 1)
panel.lines(eff$x$polity2, eff$fit, col="red", lwd=2)
trellis.unfocus()
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Plots
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