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factorplot: Improving Presentation of
Simple Contrasts in GLMs
by David A. Armstrong II

Abstract Recent statistical literature has paid
attention to the presentation of pairwise com-
parisons either from the point of view of the
reference category problem in GLMs (e.g., Eas-
ton et. al., 1991; Firth and Menzes, 2004; Plum-
mer, 2004) or in terms of multiple comparisons
(e.g., Bretz et. al., 2010; Hsu, 1996). Both schools
of thought are interested in the parsimonious
presentation of sufficient information to enable
readers to evaluate the significance of contrasts
resulting from the inclusion of qualitative vari-
ables in GLMs. While considerable advances
have been made, opportunities remain to im-
prove the presentation of this information, espe-
cially in graphical form. The factorplot com-
mand and accompanying methods discussed in
this article graphically and numerically present
results of hypothesis tests related to pairwise
comparisons resulting from qualitative covari-
ates in GLMs or coefficients in multinomial lo-
gistic regression models.

Introduction

The problem of presenting information about cat-
egorical covariates in generalized linear models is
a relatively simple one. Nevertheless, it has re-
ceived some attention in the recent literature. To be
clear about the problem, consider the following lin-
ear model where y is the dependent variable and
G = {1,2, . . . ,m} is a categorical independent vari-
able that can be represented in the regression model
by m − 1 dummy regressors, each one representing
a different category of G. The reference category, of
course, is omitted. Thus, the model looks as follows:

E(yi) = µi (1)
g(µi) = β0 + β1Di1 + β2Di2 + · · ·+ βm−1Dim−1 (2)

+ βmXi1 + . . . + βm+k−1Xik + εi,

where Di1 = 1 if Gi = 1, Di2 = 1 if Gi = 2, etc. Xik rep-
resent an arbitrary set of additional variables of any
type. Here, each of the coefficients on the dummy
regressors for G (β1, . . . , βm−1) gives the difference in
the conditional transformed mean of y between the
category represented by the dummy regressor and
the reference category, controlling for all of the other
Xik. However, the m − 1 coefficients for the cate-
gories of G imply m(m−1)

2 simple contrasts represent-
ing every pairwise comparison between categories of

G. Any single pairwise comparison of non-reference
category coefficients can be conducted in a straight-
forward fashion. If the goal is to discern whether the
conditional mean of y given G = 1 is different from
the conditional mean of y given G = 2 holding all of
the X variables constant, the quantity of interest is:

t =
b1 − b2√

V(b1 − b2)
, (3)

where

V(b1 − b2) = V(b1) + V(b2)− 2V(b1,b2). (4)

Thus, the calculation is not difficult, but calculat-
ing and presenting all of these differences can be-
come cumbersome, especially as m gets large.1 The
problem comes not in the calculation of these quanti-
ties, but in the parsimonious presentation of this in-
formation that will allow users to evaluate any de-
sired (simple) contrasts. Below, I discuss two extant
methods used to present such information. Floating
absolute risk first suggested by Easton et. al. (1991)
and more rigorously justified by Firth and Menzes
(2004); Menzes (1999); Plummer (2004) - a method of
overcoming the reference category problem by cal-
culating floating variances for all levels of a factor
(including the reference category). These floating
variances can be used to perform hypothesis tests
or construct floating confidence intervals that facil-
itate the graphical comparison of different categories
(i.e., [log-]relative risks). The multiple comparisons
literature has traditionally been focused on finding
the appropriate p-values to control either the family-
wise error rate (e.g., Holm, 1979) or the false discov-
ery rate (e.g., Benjamini and Hochberg, 1995) in a set
of simultaneous hypothesis tests. Presentation of this
information has either been in the form of line dis-
plays (e.g., Steel and Torrie, 1980) or compact letter
displays (e.g., Gramm et al., 2007).

However, when simple contrasts are the only
quantities of interest, neither method above is per-
fect. When floating/quasi-variances are presented,
the user still has to evaluate a potentially large num-
ber of hypothesis tests by either relying on the over-
lap in the floating confidence intervals or by calculat-
ing the floating t-statistic. Either solution requires a
good deal of cognitive energy on the part of the an-
alyst or reader. Compact letter displays do well at
identifying patterns of statistical significance, but are
perhaps cumbersome to investigate when patterns of
(in)significance are complicated. Below, I discuss a
method that presents this information in a manner
that will permit the immediate evaluation of all the

1Tools to carry out these computations already exist in the multcomp package in R (Hothorn et. al., 2008).
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m(m− 1)/2 hypothesis tests associated with simple
contrasts. The method I propose can also calculate
analytical standard errors that are not prone to the
same potential inferential errors produced by float-
ing variances. Alternatively, the user may specify
point estimates (e.g., log relative risks) and floating
variances to produce the same plots and tests. The
plot method for the function presents a graphical de-
piction of all hypothesis tests of interest that do not
require the analyst to make any judgement about the
degree of overlap of two confidence intervals and the
extent to which that overlap is evidence of statistical
significance of the difference of estimates.

Solutions to the Reference Cate-
gory Problem

There are a number of reasonable solutions to the
reference category problem.2 The first solution is to
present all of the covariance information required to
calculate t-statistics for contrasts of interest (i.e., the
variance-covariance matrix of the estimators). This
solution provides the reader with all necessary in-
formation to make inferences. However, it does not
provide an easy way for all of these inferences to
be presented. Another solution is to re-estimate the
model with different reference categories in turn.3

This method produces the correct inferential infor-
mation, but it is inelegant. The modal response to
the reference category problem is a failure to do any-
thing to discover (or allow readers to investigate) the
implied pairwise differences not captured by the es-
timated coefficients.

Easton et. al. (1991) proposed the idea of float-
ing absolute risk (FAR) as a means for evaluating
multiple comparisons in matched case-control stud-
ies. The idea was to provide sufficient information
such that readers could perform multiple compar-
isons with estimates of floating absolute risk at the
expense of presenting a single extra number for each
binary variable representing a level of a categorical
covariate (i.e., risk factor). Although Greenland et al.
(1999) disagreed on terminology and on the utility
of Easton’s idea of a floating scale, they agreed on
the utility presenting information that would permit
users to easily make the right inferences about rela-
tive risks among any levels of a categorical risk fac-
tor. Both Firth and Menzes (2004); Plummer (2004)
provided a more rigorous statistical foundation on
which to build estimates of floating absolute risk
(or as Firth and Menzes call them, quasi-variances).
Firth and Menzes’ method has been operationalized

in R in the qvcalc package (Firth, 2010) and both the
methods of Plummer as well as Greenland et al. have
been operationalized in the float() and ftrend()
functions, respectively, in the Epi package (Bendix
et al., 2010). In general, these solutions allow suffi-
cient information to be presented in a single column
of a statistical table that makes valid, arbitrary mul-
tiple comparisons possible.

The measures of floating absolute risk are often
used to create floating (or quasi-) confidence inter-
vals.4 Presenting these intervals allows the user to
approximately evaluate hypothesis tests about any
simple contrast. While the exact nature of these
confidence intervals is somewhat controversial (for
a discussion, see Easton and Peto (2000); Greenland
et al. (1999, 2000)), all agree that confidence intervals
can be profitably put around some quantity (either
the log-relative risks versus the reference category or
the floating trend) to display the uncertainty around
these quantities and permit visual hypothesis tests.

However, this still require the analyst or reader to
either evaluate the pairwise hypothesis tests based
on the extent to which confidence intervals overlap
or calculate the floating t-statistic for each desired
contrast. If the former, readers must still engage
in a cognitive task of position detection (Cleveland,
1985) and then make an inference based on the ex-
tent to which intervals overlap. As the distance be-
tween floating confidence intervals grows, this task
becomes more difficult. Finally, as Easton et. al.
(1991) suggests, floating variances are a “virtually
sufficient” summary of the uncertainty relating to
relative risks; however, they can produce erroneous
inferences if the error rate is sufficiently high. Both
Firth and Menzes (2004) and Plummer (2004) pro-
vide methods for calculating this error rate, which
is often small relative to other sources of error in the
model.

To put a finer point on the problem, consider the
example below using data from Ornstein (1976). The
model of interest is:

Interlocksi ∼ Poisson(µi) (5)
log (µi) = β0 + β1 log2 (Assetsi)

+ γSectorij + θNationim

where γ represents a set of coefficients on the j = 9
non-reference category dummy variables for the 10
sectors represented in the data and θ is the set of coef-
ficients for the m = 3 coefficients on the non-reference
category dummy variables representing the four na-
tions in the dataset. The goal is to determine which

2The problem here applies particularly to polytomous, unordered risk factors or covariates. The case of ordinal risk factors, where only
the difference in adjacent categories is of interest, is a bit less troublesome and will not be dealt with here.

3In fact, this re-parameterization method could be used to deal with more complicated contrasts, too. For example, it could be used
to deal with the problem proposed by Greenland et al. (1999) wherein they wanted to estimate the relative risk of being above particular
category on birthweight.

4Occasionally, quasi-variance estimates are negative, which provide the right inferences, but do not permit plotting of quasi-confidence
intervals.
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sectors (and/or nations) have significantly different
conditional means of Interlocks. The quasi-variances
can be presented along with the coefficients permit-
ting hypothesis testing at the discretion of the reader.
This approach is economical, but still requires the in-
terested reader to make 27 pairwise hypothesis tests
for sector and three pairwise hypothesis tests for na-
tion, beyond those presented in the coefficient table.

The plot of the floating confidence intervals pro-
vides similar information, but readers are still re-
quired to make judgements about statistical signifi-
cance that are occasionally difficult to justify. Con-
sider Figure 1, which presents confidence intervals
using the three different commands that produce
floating variances R (R Development Core Team,
2010) qvcalc(), float() and ftrend() .5 In the fig-
ure, the floating confidence interval for the mining
sector overlaps four other floating confidence inter-
vals and does not overlap the remaining five inter-
vals.6 Advice from Smith (1997) suggests that only
confidence intervals not containing the point esti-
mate against which the test is being done are signif-
icant. Here, all of the pairwise differences with the
mining coefficient are significant because none of the
point estimates are within the 95% confidence inter-
val for mining. A more conservative strategy is to fail
to reject null hypotheses where confidence intervals
overlap and to reject otherwise. Using this criterion,
the mining sector is different from five other coeffi-
cients - Agriculture, Banking, Construction, Finance
and Wood. Browne (1979) shows that making in-
ferences from confidence intervals requires a knowl-
edge of the different sampling variances of the un-
derlying random variables for which the confidence
intervals have been constructed (i.e., the widths of
the intervals matter); the decision does not rest solely
on the extent to which the intervals overlap. While
Browne’s method may produce more appropriate in-
ferences, it is hardly less work than producing the
hypothesis tests directly. When the appropriate pair-
wise hypothesis tests are performed, without adjust-
ing the p-values for multiple testing, it is clear that
the mining coefficient is different from eight or seven
coefficients, when using a one- or two-sided test, re-
spectively.

Even if the evidence regarding the outcome of a
hypothesis test from two confidence intervals is clear,
there are other potential sources of error. Cleve-
land (1985) finds that detecting position along a com-
mon scale is one of the easiest tasks of graphical per-
ception, but that discerning length is considerably
more difficult. His experiments show that readers
are prone to errors in even the easiest graphical per-
ception tasks and the error rate is nearly twice as

high when readers are asked to adjudicate the rel-
ative lengths of lines. Conducting hypothesis tests
using confidence intervals is an endeavor rife with
opportunities to make inferential errors.

Figure 1: Quasi-confidence Intervals for the Ornstein
Model
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Methods for calculating and presenting models
with multiple simple contrasts have developed in the
multiple testing literature as well. While the thrust
of the literature mentioned above was dealing with
the reference category problem directly, the multiple
comparisons literature has placed greater focus on
finding the appropriate p-values for a set of hypoth-
esis tests rather than a single test. This can be ac-
complished through controlling the family-wise er-
ror rate (the probability of committing a Type I er-
ror on any of the tests in the set) or the false discov-
ery rate (the proportion of falsely rejected hypothe-
ses among those rejected). Chapter 2 of Bretz et. al.
(2010) provides a brief, but informative discussion
of these general concepts. While these are useful
concepts, and the package discussed below permits
users to adjust p-values in a number of ways to ad-
dress these issues, I am more interested in how the
multiple testing literature has developed around the
presentation of multiple pairwise comparisons.

Gramm et al. (2007) discuss the two generally ac-
cepted methods for presenting multiple comparisons
- the line display and the letter display. A line dis-
play (see for example, Steel and Torrie, 1980) prints a
column where each row represents a single element
in the multiple comparisons. In the example above,
using the Ornstein data, these would be the names
of the various sectors. Then, vertical lines are drawn
connecting all values that are not significantly differ-
ent from each other. This is a relatively simple dis-
play, but as shown generally by Piepho (2004) in this

5The figure below subtracts the arbitrary constant from the results of ftrend() to put all of these estimates on the same scale. I rec-
ognize that this is not what the authors had intended, but this should not lead to erroneous inferences in any event (Easton and Peto,
2000).

6Horizontal gray lines have been drawn at the smallest lower- and largest upper-bounds of the mining sector floating confidence in-
tervals to facilitate comparison. Note that differences across the three methods in the upper bounds and lower bounds were in the third
decimal place.
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particular case, it is not always possible to faithfully
represent all of the pairwise comparisons with con-
necting line segments. Figure 2(a) shows the line dis-
play for the Ornstein model above. Note that in the
third line, there a discontinuity is required to prop-
erly depict all of the pairwise relationships. A com-
pact letter display (Piepho, 2004) places a series of
letters by each level of the categorical variable such
that any two levels with the same letter are not sig-
nificantly different from each other. These are more
flexible than line displays, they can still be improved
upon. Even though these displays do identify all
pairwise significant relationships, they do not imme-
diately identify the sign and size of the differences
and what appear to be complicated patterns of sig-
nificance may appear more simple with a different
method of display.

An alternative method of presenta-
tion

A good solution to the reference category problem
is one that permits the most efficient presentation
and evaluation of a series of hypothesis tests relat-
ing to various (simple) factor contrasts. As discussed
above, both the numerical presentation of floating
variances and the visual presentation of floating con-
fidence intervals are not maximally efficient on either
dimension (presentation or evaluation) when the an-
alyst desires information about the simple pairwise
difference between coefficients related to the levels of
a factor (i.e., simple contrasts). Similarly, I suggested
that compact letter displays, though they present all
of the appropriate information, are not maximally ef-
ficient at presenting the desired information graphi-
cally. As Chambers et al. (1983) and Cleveland (1985)
suggest, one efficient way of presenting many pair-
wise relationships is through a scatterplot matrix or
a generalized draftsman’s display (a lower- or upper-
triangular scatterplot matrix).7 The important fea-
ture of a scatterplot matrix is the organization of pair-
wise displays in a common scale. Thus, a display
that directly indicates the difference for the simple
contrasts of interest would be superior to one that re-
quires the user to make (m(m− 1))/2 pairwise com-
parisons from m floating variances or confidence in-
tervals.

The factorplot command in the library of the
same name (version 1.0) for R computes all pairwise
comparisons of coefficients relating to a factor; its
print, summary and plot methods provide the user
with a wealth of information regarding the nature of
the differences in these coefficients. These functions
overcome the problems suffered by previous meth-
ods as they present the results of pairwise hypothesis
tests directly in a visually appealing manner.

The command calculates equation 3 for each sim-
ple contrast directly through a set of elementary ma-
trix operations. First, d, a m × m(m−1)

2 matrix in
which each column has one entry equal to positive
one, one entry equal to negative one and all the re-
maining entries equal to zero is created. The posi-
tive and negative ones indicate the comparison be-
ing calculated. Using the coefficients for the desired
factor covariate (call them g, a row-vector of length
m), I calculate ∆ = gd. Standard errors for each con-
trasts are calculated using the m rows and columns
of the variance-covariance matrix of the estimators
from the model (call this V(g)): V(∆) = d′V(g)d.
The ∆ vector and the square root of the diagonal of
V(∆) (both of length m(m−1)

2 ) are then organized into
(m − 1) × (m − 1) upper-triangular matrices where
the rows refer to the first m − 1 elements of g and
the columns refer to the last m − 1 elements of g.
The entries indicate the difference between the co-
efficient represented by the row and the coefficient
represented by the column and its standard error.

The factorplot2 command operates in a slightly
different manner allowing the user to provide a set
of estimates and a variance-covariance matrix for
which pairwise comparisons are to be calculated.
If the user provides a vector of floating or quasi-
variances, the vector will be turned into a diago-
nal matrix and used in the calculations as described
above. The plot, print and summary methods work
in similar fashion for objects containing output from
the factorplot2 command.

Example 1: Ornstein Data

The factorplot command has six arguments. The
first two arguments, obj and factor.variable in-
dicate the GLM object and the name of the fac-
tor for which comparisons are desired, respectively.
The third argument, pval, allows the user to set
the desired Type I error rate. The fourth argument,
two.sided allows the user to specify whether the null
hypothesis is tested against a one- or two-sided alter-
native with the latter as the default. The order argu-
ment sets the ordering of the coefficients, with three
possibilities - ‘natural’, ‘alph’ and ‘size’. The ‘natural’
option maintains the original ordering of the factor,
the ‘alph’ option sorts them alphabetically and the
‘size’ option sorts in ascending order of the magni-
tude of the coefficient. The choices made here prop-
agate through the plot, print and summary methods.
Finally, the adjust.method argument allows users to
adjust p-values to control either the family-wise er-
ror rate or the false discovery rate using the p.adjust
function in the stats package.

The plot method for factorplot produces some-
thing akin to an upper-triangular scatterplot. The

7Cleveland (1985) makes the argument in favor of a full scatterplot matrix, but in this case, the information presented in the upper-
triangle is sufficient as nothing new could be learned by examining the full square matrix.
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Figure 2: Line and Letter Displays for Ornstein Model
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(b) Letter Display

analogy is not perfect, but the idea is similar; each
entry of the rows-by-columns display indicates the
pairwise difference between coefficients. The sta-
tistical significance of these differences is indicated
by three colors (one for significant-positive, one for
significant-negative and one for insignificant differ-
ences).8 The three colors can be controlled with the
polycol argument and the text color within the poly-
gons can be controlled with the textcol argument.9

The plot method also allows the user to specify the
number of characters with which to abbreviate the
factor levels through the abbrev.char argument. Set-
ting this to an arbitrarily high value will result in
no abbreviation. Finally, the trans argument allows
the user to impose a post-hypothesis-test transfor-
mation to the coefficient estimates. For example, if
the underlying model is a logistic regression, tests
will be done on the log-relative risks , but the rel-
ative risks could be plotted with trans = "exp".10

By default, the function prints legends identifying
the colors and numbers; these can be turned on or
off with the logical arguments print.sig.leg and
print.square.leg, respectively. Figure 3 shows the
display for the Ornstein model. The following code
produces the result in the figure.

library(factorplot)
mod <- glm(interlocks ~ log2(assets) +
nation + sector, data=Ornstein,
family=poisson)

fp <- factorplot(mod, "sector",
pval = 0.05,
two.sided=TRUE,
order="natural",

adjust.method="none")
plot(fp, abbrev.char=100)

The print method for a factorplot object prints
all of the pairwise differences, their accompanying
analytical standard errors and (optionally adjusted)
p-values. The user can specify the desired number of
decimal places for rounding, with the digits argu-
ment. The sig argument is logical allowing the user
to print all pairwise differences if FALSE and only
significant differences when TRUE. The print method
also permits the same trans argument as the plot
method for objects of class factorplot. An example
of the output from the print method is below. Here,
twenty-five of the forty-five pairwise differences are
statistically different from zero when.

8The choices made with respect to adjust.method persist through the plot, print and summary methods.
9Note, that polygons can be made to appear without text by setting polycol equal to textcol.

10After the hypothesis tests are done, a matrix named r.bdiff holds the coefficient differences. The transformation is done as follows:
do.call(trans, list(r.bdiff)), so only transformation amenable to this procedure will work.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859



CONTRIBUTED ARTICLE 6

Figure 3: Plotted factorplot object for Ornstein model
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bold =  brow − bcol

ital =  SE(brow − bcol)

print(fp, sig=T)
Difference SE p.val

AGR - CON 0.489 0.213 0.023
CON - HLD -0.474 0.235 0.045
BNK - MAN -0.288 0.102 0.005
CON - MAN -0.611 0.215 0.005
FIN - MAN -0.233 0.082 0.005
BNK - MER -0.228 0.106 0.032
CON - MER -0.551 0.220 0.013
AGR - MIN -0.250 0.069 0.000
BNK - MIN -0.416 0.084 0.000
CON - MIN -0.739 0.210 0.001
FIN - MIN -0.361 0.067 0.000
HLD - MIN -0.265 0.118 0.026
MER - MIN -0.188 0.085 0.029
BNK - TRN -0.318 0.082 0.000
CON - TRN -0.641 0.217 0.004
FIN - TRN -0.263 0.070 0.000
AGR - WOD -0.498 0.076 0.000
BNK - WOD -0.665 0.095 0.000
CON - WOD -0.988 0.215 0.000
FIN - WOD -0.610 0.077 0.000
HLD - WOD -0.513 0.121 0.000
MAN - WOD -0.376 0.080 0.000
MER - WOD -0.437 0.090 0.000
MIN - WOD -0.248 0.072 0.001
TRN - WOD -0.346 0.081 0.000

The summary method for factorplot prints the
number of coefficients that are significantly smaller
than the one of interest and the number of coeffi-
cients larger than the one of interest for each level
of the factor. While this is not a common means of
presenting the results, this does nicely summarize
the extent of significant differences among the coef-
ficients. Below is an example of printout from the
summary method. It is easy to see that the wood in-
dustry (WOD) has the highest conditional means as
it is significantly bigger than all of other categories.
It is also easy to see that the construction industry
(CON) has one of the smallest conditional means as
it is significantly smaller than seven of the other cat-
egories and not significantly bigger than any.

summary(fp)
sig+ sig- insig

AGR 1 2 6

BNK 0 5 4
CON 0 7 2
FIN 0 4 5
HLD 1 2 6
MAN 3 1 5
MER 2 2 5
MIN 6 1 2
TRN 3 1 5
WOD 9 0 0

Together, the factorplot command and its as-
sociated print, plot and summary methods provide
a wealth of information including direct hypothesis
tests using analytical standard errors for the simple
contrasts most commonly desired in (G)LMs.

Example 2: H. pylori and Gastric Precancer-
ous Lesions

Plummer et al. (2007) were interested in discerning
the extent to which infection with H. pylori contain-
ing the cytotoxin-associated (cagA) gene increased
the severity of gastric precancerous lesions. They
found that cagA+ patients had increased risks of
more severe lesions while cagA- patients were only
at significantly higher risk (than their uninfected
counterparts) of chronic gastritis. Table 1 summa-
rizes the results of the relative risk of the various
types of gastric lesions versus the baseline of nor-
mal or superficial gastritis. The presence of floating
standard errors makes it relatively easy to construct
floating confidence intervals and calculate hypothe-
sis tests.

The factorplot2() command allows the user to
supply a vector of point estimates and (floating) vari-
ances rather than an estimated model object. This
function will be particularly useful for those schol-
ars in epidemiology, where floating standard errors
are more routinely presented. From the third col-
umn of Table 1, it would seem that that there are two
significant pairwise differences, where floating con-
fidence intervals do not overlap. Namely, H. pylori
cagA- seems to raise the risk of chronic gastritis rela-
tive to Intestinal metaplasia I and the reference group
of normal and superficial gastritis. The sixth column
of Table 1 indicates that H. pylori cagA+ significantly
increases the risk of all other forms of gastritis rel-
ative to normal and superficial. Further, it appears
that the risk of chronic gastritis, chronic atrophic gas-
tritis and intestinal metaplasia I are not significantly
different from each other and similarly the risks of
intestinal metaplasia II and III and dysplasia are not
statistically different from each other. It does ap-
pear that the risk of any of the outcomes in the latter
group of three is statistically higher than the risk of
the outcomes in the former group of three, though.11.
Using factorplot2(), I can provide a more precise
test of the differences. Below is an example of how

11Strictly speaking, the difference between intestinal metaplasia I and II appears to be just insignificant as there is a small overlap in the
intervals
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Table 1: Results from Plummer et al. (2007)

cagA- cagA+

OR FSE 95% FCI OR FSE 95% FCI
Normal and superficial gastritis 1.00 0.242 (0.62, 1.61) 1.00 0.320 (0.53, 1.87)
Chronic gastritis 2.12 0.096 (1.76, 2.56) 4.33 0.101 (3.55, 5.28)
Chronic atrophic gastritis 1.44 0.156 (1.06, 1.96) 3.89 0.160 (2.84, 5.32)
Intestinal metaplasia I 1.31 0.140 (1.00, 1.72) 4.14 0.141 (3.14, 5.46)
Intestinal metaplasia II 1.44 0.380 (0.68, 3.03) 10.8 0.349 (5.45, 21.40)
Intestinal metaplasia III 1.46 0.484 (0.57, 3.77) 21.9 0.431 (9.41, 50.97)
Dysplasia 0.90 0.375 (0.43, 1.88) 15.5 0.311 (8.43, 28.51)

OR = odds ratio
FSE = floating standard error
FCI = floating confidence interval (calculated by the author, not presented in Plummer et al. [2007])
Adapted from Figure 1 in Plummer et al. (2007, 1331).

the results could be used to in conjunction with the
factorplot suite of functions.

est1 <- log(c(1.00,2.12,1.44,1.31,1.44,
1.46,0.90))

var1 <- c(0.242,0.096,0.156,0.140,
0.380,0.484,0.375)^2

est2 <- log(c(1.00,4.33,3.89,4.14,10.8,
21.9,15.5))

var2 <- c(0.320,0.101,0.160,0.141,
0.349,0.431,0.311)^2

resdf <- 48+16+27+532+346+144+144+124+
58+166+162+75+24+53+10+15+61+6+
18+90+12-18

names(est1) <- names(est2) <- c(
"Normal & superficial gastritis",
"Chronic gastritis",
"Chronic atrophic gastritits",
"Intestinal metaplasia I",
"Intestinal metaplasia II",
"Intestinal metaplasia III",
"Dysplasia")

plummer_fp1 <- factorplot2(est1, var1, resdf,
adjust.method="none")

plummer_fp2 <- factorplot2(est2, var2, resdf,
adjust.method="none")

plot(plummer_fp1, trans="exp",
abbrev.char = 100)

plot(plummer_fp2, trans="exp",
abbrev.char = 100)

The plots are displayed in Figure 4. Both of the
differences that appeared significant are according
to the factorplot as are two of the differences that
exhibited minimal overlap in the confidence inter-
vals. The differences in the risk of chronic gastri-
tis and chronic atrophic gastritis or dysplasia are
also significant according to the floating t-statistics
calculated by factorplot2. The factorplot on the
right indicates that there are no significant differ-
ences among the second through fourth diagnoses

and the fifth through seventh diagnoses. However,
all other pairwise differences are significant. Again,
relying strictly on the overlap in confidence intervals
suggests that the difference between the risk of in-
testinal metaplasia I and II (for cagA+) is not signif-
icant, though evaluating the floated t-statistic indi-
cates otherwise.

Example 3: Vote Choice in France

The factorplot2 command is versatile enough to
be used whenever pairwise comparisons need to
be made across a set of estimates with a specified
variance-covariance matrix. One such situation is
with multinomial logistic regression coefficients. The
coefficient table presents a specific set of pairwise
comparisons - namely those indicating the relation-
ship of each variable to the choice of voting for each
non-reference party versus the reference party. How-
ever, other comparisons may be interesting or useful.

In the example below, I estimate a MNL model
of vote choice (vote) on a number of standard con-
trols: retrospective national economic evaluations
(retnat), self-placement on the left-right ideological
continuum (lrself), gender (male) and age (age). By
saving the coefficients in such a way that their en-
tires match up with the appropriate variance and
covariances, these objects can be used as input to
factorplot2. The results can be printed, summa-
rized or plotted just as above. While there are a num-
ber of steps in the example below, they are easily
changed to produce similar plots or summaries for
other variables.

library(nnet)
data(france94)
france.mod <- multinom(vote ~ retnat +

lrself + male + age, data=france)

# save coefficients and variances
b <- coefficients(france.mod)
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Figure 4: Results from Plummer et al. (2007) Presented as factorplots
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(b) cagA+

v <- vcov(france.mod)

# create coefficient names
nb <- outer(rownames(b), colnames(b),

paste, sep=":")

# save names in same order as varinaces
b.vec <- c(t(b))
names(b.vec) <- c(t(nb))

# find the age coefficients
age.ind <- grep("age",

names(b.vec))

# extract age coefs and variances
age.b <- b.vec[age.ind]
age.v <- v[age.ind, age.ind]

# include coefs and vars that were
# set to 0 for identification
age.b <- c("PCF:age" = 0, age.b)
age.v <- rbind(0, cbind(0, age.v))

# drop ':age' extensions and rename
names(age.b) <- gsub(":age", "",

names(age.b), fixed=T)
rownames(age.v) <- names(age.b)
colnames(age.v) <- names(age.b)

# calculate residual df
res.df <- with(france.mod,

length(fitted.values) - edf)

# run factorplot2 command
fp3 <- factorplot2(age.b, age.v,

res.df, adjust.method="none")

# create plot
plot(fp3)

Figure 5: Plotted factorplot object for Age from
Multinomial Logit model
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Figure 5 shows that as people get older, they are
more likely to vote for RPR or UDF than the Greens
or Communists (PCF) and more likely to vote for the
Socialists (PS) than the Greens. If one is interested
in whether variables have significant effects on vote
choice, all pairwise comparisons should be consid-
ered. factorplot makes it easy for users to appro-
priately evaluate all relevant pairwise comparisons.
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Conclusion

Easton’s (1991) contribution of floating absolute risk
has been influential, especially in epidemiology and
medicine, allowing researchers to present easily in-
formation that permits the reader to make any pair-
wise comparison among the different levels of a risk
factor. Firth and Menzes (2004); Menzes (1999) and
Plummer (2004) have provided not only a rigorous,
model-based foundation for this idea, but have also
provided software that easily produces these quan-
tities for a wide array of statistical models. I argue
that while these quantities are interesting and useful,
floating confidence intervals, which are often pro-
vided ostensibly to permit hypothesis testing can be
imprecise and potentially misleading, as regards hy-
pothesis testing. Compact letter displays (Piepho,
2004) are a step in the right direction, but I argue that
they can still be improved upon in terms of graphi-
cally presenting information of interest to many re-
searchers. In the common situation wherein one is
interested in simple contrasts, the factorplot and
factorplot2 commands and their associated print,
plot and summary methods discussed above pro-
vide much greater transparency with respect to the
presentation and evaluation of hypothesis tests than
floating absolute risk or quasi-variance estimates.
The visual presentation of direct hypothesis tests re-
quires much less effort to adjudicate significance and
uncover patterns in the results than other methods,
including compact letter displays. While the calcula-
tion of these hypothesis tests is not novel, the meth-
ods of presenting and summarizing the information
represent a significant advance over the previously
available general solutions available in R.
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