General conventions: functions as function(), packages as {package} and objects as object

Data

General Workflow

- 1. Initialize a Project.
- 2. Open RMarkdown File and save in project directory.
- 3. Load packages you'll need in first chunk.
 - e.g., {tidyverse}, {rio}, {ggeffects}, {car}
- 4. Write prose and R code in RMarkdown file.

Add-on Packages

- install.packages(<package name>) downloads the package from the web to your computer - only need to do once per R version.
- library(<package name>) makes the package functions available for your R session - need to do once per R session.

Importing Data

Use the {rio} package to import data from Stata, SPSS, etc...:

- dat <- import(<path>) where <path> is the path to a file.
- export(dat. <filename>) will export the data to another proprietary format (Stata, SPSS, etc...).

Data Types

- Numeric numbers without labels
- Factors categorical variables numbers with labels.
 - o factor() and as.factor() can turn numeric and character data into factors.
 - o factorize() from the {rio} package will take labels read in with the data from Stata or SPSS and apply them to the variables.
- Strings character strings with no attached numerical information.
- Investigating Properties of Data For a dataset named data and a variable
 - str(data) shows the properties of all the variables in data. str(data\$x) - shows the properties of the x variable in the data.
 - names (data) shows the names of all the variables in data.
 - head (data) shows the first six rows of all the variables in data.

 - tail(data) shows the last six rows of all the variables in data.

{dplyr} Operations

- %>% pipe chains functions together.
- select() chooses columns based on logical expression, name or
- filter() chooses observations based on logical expression.
- group_by() groups observations so operations are performed within
- mutate() adds or modifies variables to existing dataset.
- summarise() collapses/aggregates across observations (within group). common operations: first(), last(), mean(), sd(), median(), min(), max(), quantile(), n()

Data, Viz and Linear Models **Recoding Variables**

- Using the recode() function from the {car} package: o recode(x. <recode statements>)
 - o lo and hi stand in for the minimum and maximum of the
 - variable, else is short for all other values not explicitly mentioned
 - o Example: college ed = recode(educ, "lo:12='None'; 13:15='Some'; 16:hi='Degree'", as.factor=TRUE, levels=c("None", "Some", "Degree"))
- Using case when() from the {dplyr} package.
 - o Example: college_ed = case_when(educ <= 12 ~</pre> 'None', educ > 12 & educ < 16 ~ 'Some', educ >=16 ~ 'Degree', TRUE ~ NA character)

Data Viz

In the {ggplot2} framework, data can be mapped to the following aesthetics - shape, colour, fill, alpha, linetype, size and the properties controlled with the scale * manual() functions.

- geom bar() to make bar plots, use stat="identity" if you are supplying the height of the bar with y and position=position_dodge() for side-by-side bar plots. geom_line() for lines connecting points.
- geom_histogram() for histograms, use position="identity" for
- overlapping (superposed) histograms. • geom tile() for heatmap plots, you can add the text onto the tiles
- with geom text(). • geom mosiac() from the {ggmosaic} package for making mosaic

Other useful functions:

- coord flip() to swap x and y axes.
- facet wrap (~group) to make different panels for each value of
- theme(axis.text.x=element_text(rot=45, hjust=1)) to rotate x -axis labels 45 degrees.

Model Formulas

- Generally take the form of <dependent variable> ~ <independent variables>
 - x1 + x2 additive relationship.
 - o x1 * x2 multiplicative including main effects.
 - o x1:x2 multiplicative excluding main effects.
 - log(x) natural logarithm of x.
 - o I(x^p) raise x to the p power.
 - o poly(x, p) include a p degree polynomial in x.

Linear Models

(Generalized) Linear Models

- Estimate with model <- lm(formula, data=data)
- Presentation
- stargazer(model) from the {stargazer} package to make publication-ready tables. ggpredict(model) from the {ggeffects} package for
 - making predicted effects plots. intQualQuant() from the {DAMisc} package for categoricalcontinuous interactions.
 - type='slopes' with plot=FALSE prints the simple DAintfun2() and DAintfun() from the {DAMisc} package
 - for continuous-continuous interaction conditional effect graphs.
 - changeSig() to identify changes in the significance of conditional effects
- Diagnostics
 - Linearity/Functional Form crPlots(model) from the {car} Heteroskedasticity - ncvTest(model) from the {car} package
 - or residual vs fitted plot. Normality of Residuals - shaprio.test(model\$residuals) or
 - density plot of residuals. Outliers and Influential Observations - InfluencePlot(model) from the {car} package.
 - Leverage hatvalues(model)
 - Discrepancy rstudent(model) or rstandard(model)
 - Cook's D cooks.distance(model)
 - DFBETAS dfbetas(model)

Generalized Linear Models

- Estimate with qlm(formula, data, family)
- Model fit
 - binfit() from the {DAMisc} package for pseudo-\(R^2\)
 - measures o pre() from the {DAMisc} package to calculate the
 - proportional reduction in error.
 - o AIC() and BIC() in base R to calculate information criterion measures.
 - logLik() to display the log-likelihood.
 - o lrtest() from the {lmtest} or anova() from base R to test nested models.
 - o clarke_test() from the {clarkeTest} package to test nonnested models.

General conventions: functions as function(), packages as {package} and objects as object

GLMs and Categorical Models

Generalized Linear Models

- Calculating Effects.
 - Odds Ratios for Logit: exp(code(model)) First difference at reasonable values - glmChange() from the
 - {DAMisc} package.
 - Find "central" values of all values except x_i
 - Calculate predicted pobabilities for $x_i = x_0 + \delta$ and $x_i = x_0$
 - Subtract the latter from the former
 - Average first difference glmChage2() from the {DAMisc}
 - Calculate the predicted probabilities for all observations.
 - Calculate the predicted probabilities for all observations setting $x_i = x_i + \delta$
 - Subtract the former from the latter to get the individual first differences and take the average.
 - Marginal Effect margins() from the {margins} package.
 - Calculate the partial first difference of the predicted probabilities w.r.t. x_i for each observation.
 - Average across all of the marginal effects.

Plotting Effects

- At Reasonable Values ggpredict() from the {ggeffects} package
 - Hold all variables except x_i at central values.
 - Calculate predicted probabilities at
 - $x_i = \{min(x_i), \ldots, max(x_i)\}\$
 - Plot predicted probabilities on y against $\{min(x_i), \ldots, max(x_i)\}\$ on x.
- Average Effect aveEffPlot() from the {DAMisc} package.
- Calculate predicted probability for every observation at
 - each value of $x_i = \{min(x_i), \dots, max(x_i)\}\$ ■ For each value of $x_i = \{min(x_i), \dots, max(x_i)\}$, calculate
 - the average predicted probability.
 - Plot the average predicted probabilities against $\{min(x_i),\ldots,max(x_i)\}.$

GLM Interactions

- Two separable questions (that are inseperable in the linear model).
 - 1. Is the product term needed?
 - Evaluate with statistical significance of interaction term(s).
 - 2. Is there an interaction?
 - Calculate the second difference/derivative seconDiff() from {DAMisc} calculates this.
 - For a cross-partial derivative (difference in first derivatives). you could do it by hand.

Ordinal Models

Categorical, Survey and Multilevel Models

- Estimate with clm() from the {ordinal} package or polr() from the {MASS} package.
- ordfit() and pre() from the {DAMisc} package, AIC() and BIC() from base R as well as lrtest() from {lmtest} and
- clarke_test() from {clarkeTest} all work. ordChange() and ordChange2() from {DAMisc} calculate first
- differences using the 'reasonable values' and 'observed values' approaches, respectively. • ggpredict() from {ggeffects} and ordAveEffPlot() from {DAMisc} plot effects for the 'reasonable values' and 'observed values'
- approaches, respectively. nominal_test() from {ordinal} for clm() objects and poTest() from {car} for polr() objects do the Brant test.

Multinomial Models

• Estimate with multinom() from the {nnet} package or mlogit() from the {mlogit} package.

clarke test() from {clarkeTest} all work.

- mlogit() also allows estimation of the conditional logit model. • mnlgit() and pre() from the {DAMisc} package, AIC() and
- BIC() from base R as well as lrtest() from {lmtest} and
- mnlChange() and mnlChange2() from {DAMisc} calculate first differences using the 'reasonable values' and 'observed values' approaches, respectively.
- ggpredict() from {ggeffects} and mnlAveEffPlot() from {DAMisc} plot effects for the 'reasonable values' and 'observed values' approaches, respectively.

Complex Survey Data

- You can set the survey design properties with svydesign() from the {survey} package or as_survey_design() from the {srvyr} package.
 - Use as_survey() from {srvyr} to convert an object created with the {survey} package into a 'survey tibble' to be used with {dplyr} and other {srvyr} functions.
- sumStats() from the {DAMisc} package makes summary statistics (optionally by the values of other variables),
- xt() from {DAMisc} makes weighted cross-tabulations with measure of fit for survey data.
- svyglm() and svyolr() from {survey} will estimate GLM and ordinal models. svymle() will estimate any MLE model for complex survey data.
- ggpredict() from {ggeffects} will generate predicted probabilities as will glmChange2() and probci() from the {DAMisc} package.
 - o glmChange2() and probci() use unweighted averages of individual first differences.

Multilevel Models

Multilevel and Measurement Models

- Estimated with lmer() or glmer() from {lme4} for (G)LMs. For ordinal models, use clmm() from {ordinal} and for multinomial
 - models us mlogit() from {mlogit}. o For lmer() and glmer(), including in the formula (1 |
- 12var | group) will make random intercepts and random slopes for 12var by group. coef() will provide group -level intercepts and coefficients from the
- model. ggpredict() from {ggeffects} will graph either fixed overall effects or group-level effects - with confidence intervals that include the

fixed-effect (and optionally random-effect) variances.

• brm() from {brms} will estimate a Bayesian version of the model using Stan.

group) will make random intercepts by group and (1 +

o NOTE: this could take a long time depending on the size of the model/data.

PCA/Exploratory FA

- princomp() from base R does principal components analysis.
- ggbiplot() from the {ggbiplot} package makes a biplot for the PCA. • fa() from the {psych} package does EFA with many options.
- o rotate=<rotation> will rotate the solution see ?fa for options.
- scree() from {psych} makes a scree plot for evaluating dimensionality.

CFA, SEM and Growth Models

- Estimated with cfa(), sem() or growth() from the {lavaan} package with primary operators: ○ lv ~= ind1 + ind2 specifies that ind1 and ind2 are indicators of latent variable lv.
 - o dv ~ iv1 + iv2 specifies a regression of dv on iv1 and
 - o ac := a*c specifies that the computed value ac is the product
 - of a and c o ind1 ~ ind2 indicates that the covariance between ind1 and
- ind2 should be free and estimated by the model. • modificationIndices() print the modification indices for
- {lavaan} models.
- summary (model) summarizes the model object with the following arguments: standardize=TRUE will give the standardized solution.
 - o fit.measures=TRUE give more scalar measures of fit for the

used in the model.

model. predict (model) predicts the latent variables for the observed dataset