
R: Learning by Exapmle
Data Management and Analysis

Dave Armstrong
University of Western Ontario

Department of Political Science

e: dave.armstrong@uwo.ca
w: www.quantoid.net/teachicpsr/rbyexample

Contents

1 The Basics 4
1.1 Getting R . 4
1.2 Using R . 6
1.3 Assigning Output to Objects . 6
1.4 Reading in your Data . 8
1.5 SPSS . 9
1.6 Function, Syntax and Arguments . 10
1.7 Stata . 12
1.8 Excel . 12
1.9 Data Types in R . 13
1.10 Examining Data . 14
1.11 Saving & Writing . 16

1.11.1 Where does R store things? . 16
1.12 Writing . 17
1.13 Saving . 17
1.14 Recoding and Adding New Variables . 17
1.15 Missing Data . 22
1.16 Filtering with Logical Expressions and Sorting 23
1.17 Sorting . 24
1.18 Summarising by Groups . 25

2 Merging Datasets 29

3 Statistics 30
3.1 Cross-tabulations and Categorical Measures of Association 30

3.1.1 Measures of Association . 34
3.2 Continuous-Categorical Measures of Association 35
3.3 Linear Models . 36

1

www.quantoid.net/teachicpsr/rbyexample

3.3.1 Adjusting the base category . 37
3.3.2 Model Diagnostics . 38
3.3.3 Predict after lm . 44
3.3.4 Linear Hypothesis Tests . 48
3.3.5 Factors and Interactions . 49
3.3.6 Non-linearity: Transformations and Polynomials 55
3.3.7 Testing Between Models . 59

3.4 GLMs and the Like . 63
3.4.1 Binary DV Models . 63

3.5 Ordinal DV Models . 68
3.6 Multinomial DV . 73
3.7 Survival Models . 78
3.8 Multilevel Models . 85
3.9 Factor Analysis and SEM . 95

4 Miscellaneous Statistical Stuff 103
4.1 Heteroskedasticity Robust Standard Errors 103
4.2 Clustered Standard Errors . 104
4.3 Weighting . 105

5 Finding Packages on CRAN 109

6 Warnings and Errors 110

7 Troubleshooting 111

8 Help! 119
8.1 Books . 119
8.2 Web . 120

9 Brief Primer on Good Graphics 120
9.1 Graphical Perception . 121
9.2 Advice . 122

10 Graphics Philosophies 123

11 The Plot Function 124
11.1 getting familiar with the function . 124
11.2 Default Plotting Methods . 126
11.3 Controlling the Plotting Region . 129
11.4 Example of Building a Scatterplot . 129

11.4.1 Adding a Legend . 134
11.4.2 Adding a Regression Line . 136
11.4.3 Identifying Points in the Plot . 137

11.5 Other Plots . 138

2

12 ggplots 141
12.1 Scatterplot . 142

12.1.1 Bar Graph . 147
12.2 Other Plots . 149

12.2.1 Histograms and Barplots . 149
12.2.2 Dotplot . 150

12.3 Faceting . 153
12.4 Bringing Lots of Elements Together . 156

13 Maps 158

14 Reproducibility and Tables from R to Other Software 166

15 Reproducible Research 170

16 Web Sites to Data 171
16.1 Importing HTML Tables . 171
16.2 Scraping Websites for Content . 173

16.2.1 Text (Pre-)Processing . 174
16.3 Loops . 175

16.3.1 Example: Permutation Test of Significance for Cramer’s V. 177
16.4 Loops Example: Web Spidering . 178
16.5 If-then Statements . 179

17 Repeated Calculations 180
17.1 apply and its relatives . 180

17.1.1 by . 181
17.1.2 List Apply Functions . 184

18 Basic Function Writing 184
18.1 Example: Calculating a Mean . 185
18.2 Changing Existing Function Defaults . 185
18.3 .First and .Last functions in R. 187

Introduction

Rather than slides, I have decided to distribute handouts that have more prose in them
than slides would permit. The idea is to provide something that will serve as a slightly
more comprehensive reference, than would slides, when you return home. If you’re reading
this, you want to learn R, either of your own accord or under duress. Here are some of
the reasons that I use R:

• It’s open source (that means FREE!)

• Rapid development in statistical routines/capabilities.

• Great graphs (including interactive and 3D displays) without (as much) hassle.

3

• Multiple datasets open at once (I know, SAS users will wonder why this is such a
big deal).

• Save entire workspace, including multiple datasets, all models, etc...

• Easily programmable/customizable; easily see the contents (guts) of any function.

• Easy integration with LATEX and Markdown.

1 The Basics

1.1 Getting R

R is an object-oriented statistical programming environment. It remains largely command-
line driven.1 R is open-source (i.e., free) and downloadable from http://www.cran.

r-project.org. Click the link for your operating system. In Windows, click on the link
for base and then the link for “Download R 3.6.0 for Windows”. Once it is done, double-
click on the resulting file and that will guide you through the installation process. There
are some decisions to be made, but if you’re unsure, following the defaults is generally not
a bad idea. In Windows, you have to choose between MDI mode (Multiple Document
Interface) where graphs and help files open in their own windows or SDI mode where
graphs and help files open as sub-windows in the R window. For Mac users, click on the
link for “Download R for Mac” on the CRAN home page and then click the “R-3.6.0.pkg”
link (to get the latest version, you’ll need ≥ El Capitan). For older versions of the OS,
between Maverics and El Capitan, you can download “R-3.3.3.pkg” from the same page.

You may also want to download RStudio https://www.rstudio.com/products/

rstudio/download/#download, an Integrated Development Environment (IDE) for R.
This application sits on top of your existing R installation (i.e., it also requires you to
install R separately) to provide some nice text editing functions along with some other
nice features. This is one of the better free R-editing environment and one that is worth
checking out. The interface looks like this:

1There are a couple of attempts at generating point-and-click GUIs for R, but these are almost
necessarily limited in scope and tend to be geared toward undergraduate research methods students.
Some examples are RCommander, Deducer and SciViews.

4

http://www.cran.r-project.org
http://www.cran.r-project.org
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download

Some people have had trouble with R Studio, especially when it is installed on a server,
though sometimes on their own machines, too. If you’re on a Mac and Rstudio starts to
feel “laggy”, you can solve the problem by opening the terminal and typing the following:

RSTUDIO_NO_ACCESSIBILITY=1 /Applications/RStudio.app/Contents/MacOS/RStudio

This will open a new RStudio window that will hopefully work better. Alternatives
are to use R’s built-in editor which you can get by typing “ctrl + n” on Windows or
“command + n” on the mac when you’re in an active R session, or to use another IDE,
like Atom, Sublime or Microsoft VS Code (which I use now). Note, RStudio is like a
viewer for R. It is R, just with some added convenience features.

Like Stata and SAS, R has an active user-developer community. This is attractive
as the types of models and situations R can deal with is always expanding. Unlike
Stata, in R, you have to load the packages you need before you’re able to access the
commands within those packages. All openly distributed packages are available from the
Comprehensive R Archive Network, though some of them come with the Base version
of R. To see what packages you have available, type library() There are two related
functions that you will need to obtain new packages for R. Alternatively, in RStudio, you
can click on the “Packages“ tab (which should be in the same pane with files, plots, help
and viewer). Here is a brief discussion of installing and using R packages. First, a bit
of terminology. Packages are to R’s library as books are to your university’s library. R’s
library comprises packages. So, to refer to the MASS library would technically be incorrect,
you should call in the MASS package.

• install.packages() will download the relevant source code from R and install
it on your machine. This step only has to be done once until you upgrade to a
new minor (on Windows) or major (on all OSs) version of R. For example, if you
upgrade from 3.5.0 to 3.5.1, all of the packages you downloaded will still be available
on macOS, but you will have to download them anew in Windows. In this step,
a dialog box will ask you to choose a CRAN mirror - this is one of many sites

5

that maintain complete archives of all of R’s user-developed packages. Usually, the
advice is to pick one close to you (or the cloud option).

• library() will make the commands in the packages you downloaded available to
you in the current R session (a new session starts each time R is started and
continues until that instance of R is terminated). As suggested this has to be done
(when you want to use functions other than those loaded automatically) each time
you start R. There is an option to have R load packages automatically on startup
by modifying the .RProfile file (more on that later).

1.2 Using R

The “object-oriented” nature of R means that you’re generally saving the results of com-
mands into objects that you can access whenever you want and manipulate with other
commands. R is a case-sensitive environment, so be careful how you name and access
objects in the space and be careful how you call functions lm() 6= LM().

There are a few tips that don’t really belong anywhere, but are nonetheless important,
so I’ll just mention them here and you can refer back when they become relevant.

• In RStudio, if you position your cursor in a line you want to execute (or block text
you want to execute), then hit ctrl+enter on a PC or command+enter on the mac,
the functions will be automatically executed.

• You can return to the command you previously entered in the R console by hitting
the “up arrow” (similar to “Page Up” in Stata).

• You can find out what directory R is in by typing getwd(). In RStudio, this is
visible in gray right underneath the Console tab label.

• You can set the working directory of R by typing setwd(path) where path is the
full path to the directory you want to use. The directories must be separated by
forward slashes / and the entire string must be in quotes (either double or single).
For example: setwd("C:/users/armstrod/desktop"). You can also do this in
RStudio with

Session→Set Working Directory→Choose one of Three Options

• To see the values in any object, just type that object’s name into the command
window and hit enter (or look in the object browser in RStudio). You can also type
browseEnv(), which will initiate a page that identifies the elements (and some of
their properties) in your workspace.

1.3 Assigning Output to Objects

R can be used as a big calculator. By typing 2+2 into R, you will get the following
output:

6

2+2

[1] 4

After my input of 2+2, R has provided the output of 4, the evaluation of that mathemat-
ical expression. R just prints this output to the console. Doing it this way, the output
is not saved per se. Notice, that unlike Stata, you do not have to ask R to “display”
anything in Stata, you would have to type display 2+2 to get the same result.

Often times, we want to save the output so we can look at it later. The assignment
character in R is <- (the less-than sign directly followed by the minus sign). You may
hear me say “X gets 10,” in R, this would translate to

X <- 10

X

[1] 10

You can also use the = as the assignment character. When I started using R, people
wren’t doing this, so I haven’t changed over yet, but the following is an equivalent way
of specifying the above statement:

X = 10

X

[1] 10

As with any convention that doesn’t matter much, there are dogmatic adherents on
either side of the debate. Some argue that the code is easier to read using the arrow.
Others argue that using a single keystroke to produce the assignment character is more
efficient. In truth, both are probably right. Your choice is really a matter of taste.

To assign the output of an evaluated function to an object, just put the object on the
left-hand side of the arrow and the function on the right-hand side.

X <- 4+4

Now the object X contains the evaluation of the expression 4+4 or 8. We see the contents
of X simply by typing its name at the command prompt and hitting enter. In the above
command, we’re assigning the output (or result) of the command 4+4 to X.

X

[1] 8

7

1.4 Reading in your Data

Before we move on to more complicated operations and more intricacies of dealing with
data, the one thing everyone wants to know is - “How do I get my data into R?” As it
turns out, the answer is - “quite easily.” While there are many packages that read in
data, the rio package is a comprehensive solution to importing data of all kinds. To
install the rio package, then, once that is done, you can do the following in R:

library(rio)

The first time you do this, you’ll likely have to download some other importing formats,
which you can do as follows in R:

install_formats()

Generally, you will get prompted to do this. By looking at the help page for the package,
we can see what functions are available. In R, you can do this with

help(package="rio")

You should get something like the following:

The import() function is the one that imports your data from various sources. Look-
ing at the help file for the import function will show you the types of data that can be
imported. We’ll show a couple of examples of how it works. 2

2There are also export and convert functions that will write data out to lots of formats and convert
from one to another.

8

The dataset we’ll be using here has three variables - x1, (a numeric variable), x2 (a
labeled numeric variable [0=none, 1=some]) and x3 a string variable (“no” and “yes”).
I’ve called this dataset r_example.sav (SPSS) and r_example.dta (Stata).

R has lots of different data structures available (e.g., arrays, lists, ect...). The one
that we are going to be concerned with right now is the data frame; the R terminology
for a dataset. A data frame can have different types of variables in it (i.e., character
and numeric). It is rectangular (i.e., all rows have the same number of columns and all
columns have the same number of rows. There are some more distinctions that make the
data frame special, but we’ll talk about those later.

1.5 SPSS

Let’s start with the SPSS dataset:

spss.dat <- import("r_example.sav")

The first argument (and only one we’ll use) is the name of the dataset. If the dataset is
in R’s current working directory, then only the file name is needed. If the files is not in
R’s working directory, then we have to put the full path to the dataset. Either way, the
full path or the file name, both have to be in either double or single quotes. We can put
the output of this in an object called spss.dat. This name is arbitrary.

To see what the data frame looks like, you simply type the name of the object at the
command prompt and hit enter:

spss.dat

x1 x2 x3

1 1 0 yes

2 2 0 no

3 3 1 no

4 4 0 yes

5 3 0 no

6 4 0 yes

7 1 1 yes

8 2 1 yes

9 5 1 no

10 6 0 no

If we wanted to look at a single variable from the data frame, we could use the dollar
sign $, to extract a single variable from a data frame:

spss.dat$x1

[1] 1 2 3 4 3 4 1 2 5 6

attr(,"label")

[1] "x1"

attr(,"format.spss")

[1] "F8.2"

9

1.6 Function, Syntax and Arguments

Even though R is developed by many people, the syntax across commands is quite unified,
or probably as much as it can be. Each function in R has a number of acceptable argu-
ments - parameters you can specify that govern and modify the behavior of the function.
In R, arguments are specified as first by supplying the name of the argument you are
specifying and then by specifying the value(s) you want to apply to that argument. Let’s
take a pretty easy example first, mean. There are two ways to figure out what arguments
are available for the function mean(). One is to look at its help file, by typing ?mean or
help(mean).

You can see that the mean() function takes at least three arguments - x, the vector of
values for which you want the mean calculated, trim - the proportion of data trimmed
from each end if you want a trimmed mean. You can see in the help file that the default
value for trim is 0. Finally, you can specify what you want to be done with missing data
with na.rm the missing data can either be listwise deleted (if the argument is TRUE) or not
(if the argument is ”FALSE”, the default). Arguments can either be specified explicitly
by their names or, so long as they are specified in order, they can be given without their
name. The arguments should be separated by commas. For example:

mean(spss.dat$x1)

[1] 3.1

mean(x=spss.dat$x1)

[1] 3.1

mean(na.rm=TRUE, x=spss.dat$x1)

[1] 3.1

You will notice that we specified two different types of arguments above.

• The x argument wanted a vector of values and we provided a variable from our
dataset. Whenever the argument is something that R recognizes as an object or is
a function that R can interpret, then quotes are not needed.

• The na.rm argument is called a logical argument because it can be either TRUE

(remove missing data) or FALSE (do not remove missing data). Note that logical
arguments do not get put in quotation marks because R understands what TRUE

and FALSE mean. In most cases, these can be abbreviated with T and F unless you
have redefined those letters.

mean(spss.dat$x1, na.rm=T)

[1] 3.1

10

Note that assigning T or F to be something is not necessarily great form as people
might sometimes be accustomed to using these as shortcuts to logical values. This
could result in the following sort of problem:

T <- "something"

> mean(spss.dat$x1, na.rm=T)

Error in if (na.rm) x <- x[!is.na(x)] :

argument is not interpretable as logical

Arguments can also be character strings (i.e., words that are in quotations, either single
or double). Let’s consider the correlation function, cor(). This function again wants
and x and y to correlate (though there are other ways of specifying it, too), as well as
character string arguments for use and method. If you look just at the help file, you will
see the following:

what you will see is that both use and method have default values. For use the default
value is 'everything' and the default for method is 'pearson'. The help file gives more
information (particularly in the “Details” section) about what all of the various options
mean.

cor(spss.dat$x1, spss.dat$x2, use="complete.obs",

method="spearman")

[1] -0.1798608

There are other types of arguments as well, but one of the most common is a formula.
This generally represents situations where one variable can be considered a dependent
variable and the other(s) independent variable(s). For example, if we wanted to run a
linear model of x1 on x2 from the data above, we would do:

11

lm(x1 ~ x2, data=spss.dat)

##

Call:

lm(formula = x1 ~ x2, data = spss.dat)

##

Coefficients:

(Intercept) x2

3.3333 -0.5833

where the formula is specified as y ~ x. The dependent variable is on the left-hand side of
the formula and the independent variable(s) are on the right-hand side of the formula. If
we had more than one independent variable, we could separate the independent variables
with a plus (+) if we wanted the relationship to be additive (e.g., y ~ x1 + x2) and an
asterisk (*) if we wanted the relation ship to be multiplicative (e.g., y ~ x1 * x2).

1.7 Stata

The basic operations here are pretty similar when reading in Stata datasets. The only
difference is there is a different command - read_dta. You can see what the optional
arguments are for the function by typing help(read_dta). There are a couple of differ-
ences here. There is an encoding argument (only potentially needed for files before v.
14 that were encoded in something other than UTF-8).

stata.dat <- import("r_example.dta")

stata.dat

x1 x2 x3

1 1 0 yes

2 2 0 no

3 3 1 no

4 4 0 yes

5 3 0 no

6 4 0 yes

7 1 1 yes

8 2 1 yes

9 5 1 no

10 6 0 no

1.8 Excel

There are a couple of different ways to get information in to R from excel - either directly
from whe workbook or from a .csv file from one of the sheets.

12

csv.dat <- import("r_example.csv")

csv.dat

x1 x2 x3

1 1 none yes

2 2 none no

3 3 some no

4 4 none yes

5 3 none no

6 4 none yes

7 1 some yes

8 2 some yes

9 5 some no

10 6 none no

With an excel workbook, you’ll also need to provide the which argument, which should
be the sheet name in quotes or number (not in quotes).

xls.dat <- import("r_example.xlsx", which="Sheet1")

xls.dat <- import("r_example.xlsx", which=1)

xls.dat

x1 x2 x3

1 1 none yes

2 2 none no

3 3 some no

4 4 none yes

5 3 none no

6 4 none yes

7 1 some yes

8 2 some yes

9 5 some no

10 6 none no

1.9 Data Types in R

This is a convenient time to talk about different types of data in R. There are basically
three different types of variables - numeric variables, factors and character strings.

• Numeric variables would be something like GDP/capita, age or income (in $).
Generally, these variables do not contain labels because they have many unique
values. Dummy variables are also numeric with values 0 and 1. R will only do
mathematical operations on numeric variables (e.g., mean, variance, etc...).

• Factors are variables like social class or party for which you voted. When you
think about how to include variables in a model, factors are variables that you

13

would include by making a set of category dummy variables. Factors in R look
like numeric variables with value labels in either Stata or SPSS. That is to say that
there is a numbering scheme where each unique label value gets a unique number
(all non-labeled values are coded as missing). Unlike in those other programs, R
will not let you perform mathematical operations on factors.

• Character strings are simply text. There is no numbering scheme with correspond-
ing labels, the value in each cell is simply that cell’s text, not a number with a
corresponding label like in a factor.

1.10 Examining Data

There are a few different methods for examining the properties of your data. The first
will tell you what type of data are in your data frame and gives a sense of what some
representative values are.

str(stata.dat)

'data.frame': 10 obs. of 3 variables:

$ x1: num 1 2 3 4 3 4 1 2 5 6

..- attr(*, "label")= chr "First variable"

..- attr(*, "format.stata")= chr "%8.0g"

$ x2: num 0 0 1 0 0 0 1 1 1 0

..- attr(*, "label")= chr "Second variable"

..- attr(*, "format.stata")= chr "%8.0g"

..- attr(*, "labels")= Named num 0 1

.. ..- attr(*, "names")= chr "none" "some"

$ x3: chr "yes" "no" "no" "yes" ...

..- attr(*, "label")= chr "Third variable"

..- attr(*, "format.stata")= chr "%3s"

The second method is a numerical summary. This gives a five number summary + mean
for quantitative variables, a frequency distribution for factors and minimal information
for character vectors.

summary(stata.dat)

x1 x2 x3

Min. :1.0 Min. :0.0 Length:10

1st Qu.:2.0 1st Qu.:0.0 Class :character

Median :3.0 Median :0.0 Mode :character

Mean :3.1 Mean :0.4

3rd Qu.:4.0 3rd Qu.:1.0

Max. :6.0 Max. :1.0

You could also use the describe function from the Hmisc package (which you’ll have
to install before you load it the first time):

14

library(psych)

describe(stata.dat)

vars n mean sd median trimmed mad min max range skew kurtosis

x1 1 10 3.1 1.66 3 3.00 1.48 1 6 5 0.25 -1.34

x2 2 10 0.4 0.52 0 0.38 0.00 0 1 1 0.35 -2.05

x3* 3 10 NaN NA NA NaN NA Inf -Inf -Inf NA NA

se

x1 0.53

x2 0.16

x3* NA

You can also describe data by groups, with the describeBy() function in the psych

package:

describeBy(stata.dat, group="x2")

##

Descriptive statistics by group

group: 0

vars n mean sd median trimmed mad min max range skew kurtosis se

x1 1 6 3.33 1.75 3.5 3.33 1.48 1 6 5 0.14 -1.52 0.71

x2 2 6 0.00 0.00 0.0 0.00 0.00 0 0 0 NaN NaN 0.00

x3* 3 6 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA

--

group: 1

vars n mean sd median trimmed mad min max range skew kurtosis se

x1 1 4 2.75 1.71 2.5 2.75 1.48 1 5 4 0.28 -1.96 0.85

x2 2 4 1.00 0.00 1.0 1.00 0.00 1 1 0 NaN NaN 0.00

x3* 3 4 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA

In the dataset returned by the import function, often factors will be represented by a
labelled class variable that is numeric, but contains information on the labelling of the
numbers. Unless you generally want those variables treated numerically, you may want
to chance those into factors, which you can do with the factorize() function in the rio

package.

stata.fdat <- factorize(stata.dat)

Note, you could overwrite the existing data if you like by putting stata.dat on the
left-hand side of the assignment arrow.

Note that, none is the reference category. In R, it is always the first level that is the
reference level and unless an alternative is specified, this is the first level alphabetically.
This is largely irrelevant (at least from a statistical point of view), but can be changed
with the relevel function:

levels(stata.fdat$x2)

[1] "none" "some"

stata.fdat$x2 <- relevel(stata.fdat$x2, ref="some")

15

1.11 Saving & Writing

1.11.1 Where does R store things?

• Files you ask R to save are stored in R’s working directory. By default, this is
your home directory (on the mac mine is /Users/armstrod and on Windows it is
C:\Users\armstrod\documents).

• If you invoke R from a different directory, that will be the default working directory.

• You can find out what R’s working directory is with:

getwd()

[1] "/Users/david/Dropbox (DaveArmstrong)/IntroR/Boulder"

• You can change the working directory with:

– RStudio: Session → Chose Working Directory

– Mac:

setwd("/Users/armstrod/Dropbox/IntroR")

– Windows:

setwd("C:/Users/armstrod/Dropbox/IntroR")

Note the forward slashes even in the Windows path. You could also do
C:\\users\\armstrod\\Dropbox\\IntroR. For those of you who would prefer to
browse to a directory, you could do that with

– Mac:

library(tcltk)

setwd(tk_choose.dir())

– Windows:

setwd(choose.dir())

There are a number of different ways to save data from R. You can either write it
out to its own file readable by other software (e.g., .dta, .csv, .dbf), you can save a single
dataset as an R dataset or you can save the entire workspace (i.e., all the objects) so
everything is available to you when you load the workspace again (.RData or .rda).

16

1.12 Writing

You can write data out with the export() function in the rio package. You can write
out to any of the following formats - .csv, .xlsx, .json, .rda, .sas7bdta, .sav, .dta, text. The
function will pick the appropriate type based on the extension of the file you’re exporting
to. You can also specify it directly with the format function.

export(stata.dat, file="stata_out.dta")

1.13 Saving

• You can save the entire R workspace with save.image() where the only argument
needed is a filename (e.g., save.image('myWorkspace.RData')). This will allow
you to load all objects in your workspace whenever you want. You can do this with
load('myWorkspace.RData').

• You can save a single object or a small set of objects with save() e.g.,
save(spss.dat, stata.dat, file='myStuff.rda') would save just those two
data frames in a file called myStuff.rda which you could also get back into R
with load().

You try it

1. Read in the data file mtcars.dta that was in your zip
file and save it to an object.

• Print the contents of the data frame.

• Use some of the summarizing functions to learn
about the properties of the data.

• Save the data file as an R data set.

2. Read in your own dataset and learn about some of its
properties.

1.14 Recoding and Adding New Variables

To demonstrate a couple of the features of R, we will add a variable to the dataset. Let’s
add a dummy variable that has zero for the first five cases and one for the last five cases.
Unlike SPSS and Stata, there’s not a particularly good spreadsheet-type data editor in
R. For us, it is easier to make an object that looks the way we want, and then append
that object to the dataset. If this is the strategy we adopt, first we need to make the
object. What we want is a string of numbers (five zeros and five ones). To do this, we
need to use R’s concatenate function, c(). I’ll show this to you, then we’ll discuss.

17

x4 <- c(0,0,0,0,0,1,1,1,1,1)

x4

[1] 0 0 0 0 0 1 1 1 1 1

What this did is make one object, called x4 that is a string of numbers as above. Specif-
ically, this is a vector with a length of ten (that is, it has ten entries). Now, we need to
assign a new variable in the dataset the values of x4. We can do this as follows:

stata.dat <- import("r_example.dta")

stata.dat <- factorize(stata.dat)

stata.dat$x4 <- x4

stata.dat

x1 x2 x3 x4

1 1 none yes 0

2 2 none no 0

3 3 some no 0

4 4 none yes 0

5 3 none no 0

6 4 none yes 1

7 1 some yes 1

8 2 some yes 1

9 5 some no 1

10 6 none no 1

Recoding and making new variables that are functions of existing variables are two
relatively common operations as well. These are relatively easily done in R, though
perhaps not as easily as in Stata and SPSS. First, generating new variables. As we
saw above, we can generate a new variable simply by giving the new variable object in
the dataset some values. We can also do this when creating transformations of existing
variables. For example:

stata.dat$log_x1 <- log(stata.dat$x1)

stata.dat

x1 x2 x3 x4 log_x1

1 1 none yes 0 0.0000000

2 2 none no 0 0.6931472

3 3 some no 0 1.0986123

4 4 none yes 0 1.3862944

5 3 none no 0 1.0986123

6 4 none yes 1 1.3862944

7 1 some yes 1 0.0000000

8 2 some yes 1 0.6931472

9 5 some no 1 1.6094379

10 6 none no 1 1.7917595

18

In the first command above, I generated the new variable (log_x1) as the log of the
variable x1. Now, both of variables exist in the dataset stata.dat.

Recoding variables is a bit more cumbersome. There are commands in the car library
(written by John Fox) that make these operations more user-friendly. To make those
commands accessible, we first have to load the library with: library(car). Then, we
can see what the command structure looks like by looking at help(recode). Let’s now
say that we want to make a new variable were values of one and 2 on x1 are coded as 1
and values 3-6 are coded 2. We could do this with the recode command as follows:

recode(stata.dat$x1, "c(1,2)=1; c(3,4,5,6)=2")

[1] 1 1 2 2 2 2 1 1 2 2

attr(,"label")

[1] "First variable"

attr(,"format.stata")

[1] "%8.0g"

Here, the recodes amount to a vector of values and then the new value that is to be
assigned to each of the existing values. The old/new combinations are each separated by
a semi-colon and the entire recoding statement is put in double-quotes. Since I have not
assigned the recode to an object, it simply prints the recode on the screen. It gives me a
chance to, “try before I buy”. If I’m happy with the output, I can now assign that recode
to a new object.

stata.dat$recoded_x1 <- recode(stata.dat$x1,

"c(1,2)=1; c(3,4,5,6)=2")

stata.dat

x1 x2 x3 x4 log_x1 recoded_x1

1 1 none yes 0 0.0000000 1

2 2 none no 0 0.6931472 1

3 3 some no 0 1.0986123 2

4 4 none yes 0 1.3862944 2

5 3 none no 0 1.0986123 2

6 4 none yes 1 1.3862944 2

7 1 some yes 1 0.0000000 1

8 2 some yes 1 0.6931472 1

9 5 some no 1 1.6094379 2

10 6 none no 1 1.7917595 2

You can also recode entire ranges of values as well. Let’s imagine that we want to recode
log_x1 such that anything greater than zero and less than 1.5 is a 1 and that anything
greater than or equal to 1.5 is a 2. We could do that as follows:

recode(stata.dat$log_x1, "0=0; 0:1.5=1; 1.5:hi = 2")

19

[1] 0 1 1 1 1 1 0 1 2 2

attr(,"label")

[1] "First variable"

attr(,"format.stata")

[1] "%8.0g"

cbind(stata.dat$log_x1, recode(stata.dat$log_x1,

"0=0; 0:1.5=1; 1.5:hi = 2"))

[,1] [,2]

[1,] 0.0000000 0

[2,] 0.6931472 1

[3,] 1.0986123 1

[4,] 1.3862944 1

[5,] 1.0986123 1

[6,] 1.3862944 1

[7,] 0.0000000 0

[8,] 0.6931472 1

[9,] 1.6094379 2

[10,] 1.7917595 2

There are some other functions that can help change the nature of your data, too.
One particularly useful one is binVariable from the RcmdrMisc package. There are a
couple of main arguments (aside from the data). The bins argument specifies how many
bins (number of groups + 1) you want and the method argument tells R whether you
want groups with roughly equal intervals (intervals, the default) or groups with roughly
equal counts (proportions). There is an optional argument labels that will give the
labels to attach to each of the categories that is created.

library(RcmdrMisc)

data(Duncan)

incgroup <- binVariable(Duncan$income, bins=4, method="intervals")

table(incgroup)

incgroup

1 2 3 4

16 9 8 12

incgroup2 <- binVariable(Duncan$income, bins=4, method="proportions")

table(incgroup2)

incgroup2

1 2 3 4

15 9 11 10

20

You try it

Read in the nes1996.dta file, do the following:
1. Examine the data, both the properties of the data

frame and the numerical summary.

2. Recode the lrself variable (left-right self-placement)
such that the values 0 to 3 (inclusive) are “left”, 4 to
6 (inclusive) are “center” and 7 to 10 (inclusive) are
“right”.

3. Recode the race variable into a dummy indicating
whether observations are white or non-white.

4. Create an age-group variable from the variable age

with five roughly evenly-sized groups.

21

1.15 Missing Data

In R, missing data are indicated with NA (similar to the ., or .a, .b, etc..., in Stata).
The dataset r_example_miss.dta, looks like this in Stata:

. list

+-----------------+

| x1 x2 x3 |

|-----------------|

1. | 1 none yes |

2. | 2 none no |

3. | . some no |

4. | 4 . yes |

5. | 3 none no |

|-----------------|

6. | 4 none yes |

7. | 1 some yes |

8. | 2 some yes |

9. | 5 some no |

10. | 6 none no |

+-----------------+

Notice that it looks like values are missing on all three variables. Let’s read the data into
R and see what happens.

stata2.dat <- import("r_example_miss.dta")

stata2.dat <- factorize(stata2.dat)

stata2.dat

x1 x2 x3

1 1 none yes

2 2 none no

3 NA some no

4 4 <NA> yes

5 3 none no

6 4 none yes

7 1 some yes

8 2 some yes

9 5 some no

10 6 none no

Notice that the missing elements are NA.

There are a few different methods for dealing with missing values, though they pro-
duce the same statistical result, they have different post-estimation behavior. These are
specified through the na.action argument to modeling commands and you can see how

22

these work by using the help functions: ?na.action. In lots of the things we do, we will
have to give the argument na.rm=TRUE to remove the missing data from the calculation
(i.e., listwise delete).

1.16 Filtering with Logical Expressions and Sorting

A logical expression is one that evaluates to either TRUE (the condition is met) or FALSE
(the condition is not met). There are a few operators you need to know (which are the
same as the operators in Stata or SPSS).

EQUALITY == (two equal signs) is the symbol for logical equality. A == B evaluates
to TRUE if A is equivalent to B and evaluates to FALSE otherwise.

INEQUALITY != is the command for inequality. A != B evaluates to TRUE when A is
not equivalent to B.

AND & is the conjunction operator. A & B would evaluate to TRUE if both A and B were
met. It would evaluate to FALSE if either A and/or B were not met.

OR | (the pipe character) is the logical or operator. A | B would evaluate to TRUE if
either A and/or B is met and would evaluate to FALSE only if neither A nor B were
met.

NOT ! (the exclamation point) is the character for logical negation. !(A & B) is the
mirror image of (A & B) such that the latter evaluates to TRUE when the former
evaluates to FALSE.

When using these with variables, the conditions for factors and character strings should
be specified with characters. With numeric variables, the conditions should be specified
using numbers. A few examples will help to illuminate things here.

stata.dat$x3 == "yes"

[1] TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE

stata.dat$x2_fac == "none"

logical(0)

stata.dat$x2 == 1

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

stata.dat$x1 == 2

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

the which() command will return the observation numbers for which the logical expres-
sion evaluates to TRUE.

23

which(stata.dat$x3 == "yes")

[1] 1 4 6 7 8

which(stata.dat$x2_fac == "none")

integer(0)

which(stata.dat$x2 == 1)

integer(0)

which(stata.dat$x1 == 2)

[1] 2 8

You can use a logical expression to subset a matrix and you will only see the observations
where the conditional statement evaluates to TRUE. Let’s use this to subset our dataset.

stata.dat[which(stata.dat$x1 == 1 & stata.dat$x2 == "none"),]

x1 x2 x3 x4 log_x1 recoded_x1

1 1 none yes 0 0 1

You can’t evaluate whether values are finite, missing or null with the == construct.
Instead, there are functions that do this.

is.na(stata2.dat$x2)

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

is.finite(stata2.dat$x2)

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

is.null(stata2.dat$x2)

[1] FALSE

There are lots of other is. functions that you could use, too. For example, is.factor()
and is.numeric() are commonly used ones.

1.17 Sorting

The Sort (note the capital “S”) in the DescTools package allows us to sort vectors,
matrices, tables or data frames.

24

library(DescTools)

stata.dat_sorted <- Sort(stata.dat, c("x1", "x2"), decreasing=FALSE)

stata.dat_sorted

x1 x2 x3 x4 log_x1 recoded_x1

1 1 none yes 0 0.0000000 1

7 1 some yes 1 0.0000000 1

2 2 none no 0 0.6931472 1

8 2 some yes 1 0.6931472 1

5 3 none no 0 1.0986123 2

3 3 some no 0 1.0986123 2

4 4 none yes 0 1.3862944 2

6 4 none yes 1 1.3862944 2

9 5 some no 1 1.6094379 2

10 6 none no 1 1.7917595 2

Now, there are two datasets in our workspace, one ordered on x1 and one original one.
Both contain exactly the same information, but sorted a different way.

You try it

Using the data object that contains the nes1996.dta file, do
the following:

1. Find the observations where both of the following con-
ditions hold simultaneously:

• educ is equal to
3. High school diploma or equivalency te

• hhincome is equal to
1. A. None or less than 2,999

2. Save the results of the above into a new data object
and print the data object.

3. Usiong your own data, try recoding a couple of vari-
ables.

1.18 Summarising by Groups

One of the things we might often want to do is to summarize or collapse data by groups.
There are lots of methods to do this. Some of them, like by are more flexible, but produce
output that still requires some massaging to be useful. Others, such as aggregate (which
has syntax that is similar to by), produce a dataframe as output, but is less flexible
in how it operates. There is a function in the dplyr package called summarise that
summarizes data by groups (among other things). To use this effectively, however, we
need to learn something else first - the ‘pipe’. The pipe is implemented in magrittr

25

and is an important part of how many people argue we should be executing multiple
sequential functions, rather than nesting them inside of each other. The pipe character
is %>% and what it does is it passes whatever happens on its left side to the function on
its right side.

Here’s a simple example. I’ve got some data on strikes which you can read in as
follows:

strikes <- import("https://quantoid.net/files/rbe/strikes_small.rda")

If I wanted to figure out how many strikes happened in Denmark over the time-period of
the dataset, I could sum up the strike_vol variable for all of the observations where the
country is Denmark. If I were going to try to do this in a single set of nested functions,
I could do the following:

sum(strikes[which(strikes$country == "Denmark"), "strike_vol"])

[1] 4205

An alternative with pipes would look like the following:

library(dplyr)

library(magrittr)

strikes %>% filter(country=="Denmark") %>% select(strike_vol) %>% sum

[1] 4205

The above basically says, take the strikes data and use it as the data in the filter

command, that is filtering on country. Then, take the filtered data and pass it to the
select function where we choose one variable (strike_vol). Finally, pass that one
variable to the function sum. This works well when the first argument of the function
we’re executing is the data that gets passed from the previous position in the pipe.
However, what if we had missing data and wanted to listwise delete it? You can always
use the period (.) to stand in for whatever is passed from the previous position in the
pipe:

strikes %>% filter(country=="Denmark") %>%

select(strike_vol) %>% sum(., na.rm=TRUE)

[1] 4205

Now, if we wanted to figure out how many strikes were in each country in the dataset,
we can replace the filter command above with the group_by function and replace the
sum command with the appropriate summarise function.

strikes %>% group_by(country) %>%

summarise(n_strike = sum(strike_vol))

26

A tibble: 18 x 2

country n_strike

<fct> <dbl>

1 Australia 10557

2 Austria 246

3 Belgium 2770

4 Canada 17035

5 Denmark 4205

6 Finland 8808

7 France 10840

8 Germany 805

9 Ireland 10437

10 Italy 29376

11 Japan 2229

12 Netherlands 570

13 New Zealand 5405

14 Norway 796

15 Sweden 1967

16 Switzerland 24

17 UK 8405

18 USA 5541

If we wanted to save those data for later, we could simply assign the output from the
entire string to an object.

tmp <- strikes %>% group_by(country) %>%

summarise(n_strike = sum(strike_vol))

tmp

A tibble: 18 x 2

country n_strike

<fct> <dbl>

1 Australia 10557

2 Austria 246

3 Belgium 2770

4 Canada 17035

5 Denmark 4205

6 Finland 8808

7 France 10840

8 Germany 805

9 Ireland 10437

10 Italy 29376

11 Japan 2229

12 Netherlands 570

13 New Zealand 5405

14 Norway 796

27

15 Sweden 1967

16 Switzerland 24

17 UK 8405

18 USA 5541

The only restriction on the arguments to summarise is that the value produced has to
be a scalar (i.e., a single value). This would prevent us from using the ci function in
the gmodels package to generate the confidence interval. However, we could still do this
by executing the function and pulling out on the value that we want. Here’s what the
output to ci looks like.

library(gmodels)

ci(strikes$strike_vol)

Estimate CI lower CI upper Std. Error

340.95455 282.15610 399.75299 29.89631

Note that the second element of the vector is the lower bound and the third element
is the upper bound. If we wanted a data frame with the average along with the lower
and upper confidence bounds, too, we could do the following:

tmp <- strikes %>% group_by(country) %>%

summarise(mean_strike = mean(strike_vol),

lwr = ci(strike_vol)[2], upr=ci(strike_vol)[3])

tmp

A tibble: 18 x 4

country mean_strike lwr upr

<fct> <dbl> <dbl> <dbl>

1 Australia 459 342. 576.

2 Austria 10.7 3.01 18.4

3 Belgium 252. 170. 334.

4 Canada 710. 565. 854.

5 Denmark 263. -18.5 544.

6 Finland 383. 193. 573.

7 France 452. -138. 1042.

8 Germany 50.3 4.42 96.2

9 Ireland 652. 432. 872.

10 Italy 1224 978. 1470.

11 Japan 92.9 59.6 126.

12 Netherlands 23.8 9.96 37.5

13 New Zealand 338. 273. 402.

14 Norway 49.8 15.8 83.7

15 Sweden 82.0 -17.1 181.

16 Switzerland 1.5 0.452 2.55

17 UK 525. 327. 724.

18 USA 346. 216. 477.

28

2 Merging Datasets

Merging datasets is relatively easy in R. Just like any other package, all you need are
variables to merge on. There are several functions that do merging. We’ll use the ones
from the dplyr. Each one has two arguments, x (the first dataset) and y (the second
dataset). Here’s how the functions perform.

Table 1: Workings of the join functions from the dplyr package

Observations in x Observations in y

left_join all retained those in x retained
right_join those in y retained all retained
full_join all retained all retained
inner_join only those in both x and y retained only those in both x and y retained

By default, the data are joined on all matching variable names. Otherwise, the by

argument allows you to specify the merging variables.

polity <- import("https://quantoid.net/files/rbe/polity_small.dta")

ciri <- import("https://quantoid.net/files/rbe/ciri_small.dta")

lmerge <- left_join(polity, ciri)

rmerge <- right_join(polity, ciri)

fmerge <- full_join(polity, ciri)

imerge <- inner_join(polity, ciri)

nrow(lmerge)

[1] 12590

nrow(rmerge)

[1] 4027

nrow(fmerge)

[1] 13005

nrow(imerge)

[1] 3612

A couple of notes here.

• This preserves all duplicates. There are 3 duplicate country-years in the polity
dataset and 52 duplicate country-years in the ciri dataset. We could find duplicates
as follows:

29

dups <- which(duplicated(lmerge[,c("ccode", "year")]))

dups

[1] 5800 6402 8690 9034 9036 9038 9040 9042 9044 9046 9048 9050 9052 9054

[15] 9056 9058 9060 9062 9080 9082 9084 9086 9088 9090 9092 9094 9096 9098

[29] 9100 9102 9104 9106 9108 9110 9112 9114 9116 9118 9120 9122 9124 9126

[43] 9128 9144 9146 9148 9150 9152 9154 9156 9158 9160 9162 9164 9166

• The by = variables need to have the same names. By default (without the argu-
ment specified), the command looks for the intersecting column names across the
two datasets.

If we wanted to drop the duplicated years, we could do that with

lmerge2 <- lmerge[-dups,]

The merging of many-to-one data happens exactly the same way. The result is that
the smaller dataset elements get replicated for all of the observations in the bigger data
with the same matching variables.

3 Statistics

Below, we will go over a set of common statistical routines.

3.1 Cross-tabulations and Categorical Measures of Association

There are (at least) three different methods for making cross-tabs in R. The simplest
method is with the table() function. For this exercise, we’ll use the GSS data from
2012.

gss <- import("GSS2012.dta")

gss$happy <- factorize(gss$happy)

gss$mar1 <- factorize(gss$mar1)

tab <- table(gss$happy, gss$mar1)

tab

##

married widowed divorced separated never married

very happy 381 37 74 13 80

pretty happy 504 105 180 38 241

not at all happy 76 35 55 24 73

If you want marginal values on the table, you can add those with the addmargins

function.

30

addmargins(tab)

##

married widowed divorced separated never married Sum

very happy 381 37 74 13 80 585

pretty happy 504 105 180 38 241 1068

not at all happy 76 35 55 24 73 263

Sum 961 177 309 75 394 1916

Finally, for now, if you wanted either row or column proportions, you could obtain
that information by using the prop.table function:

round(prop.table(tab, margin=2), 3)

##

married widowed divorced separated never married

very happy 0.396 0.209 0.239 0.173 0.203

pretty happy 0.524 0.593 0.583 0.507 0.612

not at all happy 0.079 0.198 0.178 0.320 0.185

The margin=2 argument is for column percentages, margin=1 will give you row percent-
ages.

You can accomplish the same thing with the (more versatile) xtabs function.

xt1 <- xtabs(~ happy + mar1, data=gss)

xt1

mar1

happy married widowed divorced separated never married

very happy 381 37 74 13 80

pretty happy 504 105 180 38 241

not at all happy 76 35 55 24 73

The nice thing about xtabs is that it also works with already aggregated data.

gss.ag <- import("GSS2012ag.dta")

gss.ag$happy <- factorize(gss.ag$happy)

gss.ag$mar1 <- factorize(gss.ag$mar1)

head(gss.ag)

mar1 happy class freq

1 married very happy 1 14

2 widowed very happy 1 4

3 divorced very happy 1 8

4 separated very happy 1 3

5 never married very happy 1 8

6 married pretty happy 1 33

xt <- xtabs(freq ~ happy + mar1, data=gss.ag)

xt

31

mar1

happy married widowed divorced separated never married

very happy 381 37 74 13 80

pretty happy 504 105 180 38 241

not at all happy 76 35 55 24 73

It can also produce tables in more than two dimensions:

gss$class <- factorize(gss$class)

xt2 <- xtabs(freq ~ happy + mar1 + class, data=gss.ag)

xt2

, , class = 1

##

mar1

happy married widowed divorced separated never married

very happy 14 4 8 3 8

pretty happy 33 10 22 6 31

not at all happy 11 6 13 8 21

##

, , class = 2

##

mar1

happy married widowed divorced separated never married

very happy 144 9 27 6 40

pretty happy 200 39 93 20 128

not at all happy 39 14 30 10 32

##

, , class = 3

##

mar1

happy married widowed divorced separated never married

very happy 200 22 34 3 27

pretty happy 263 54 62 11 73

not at all happy 25 14 9 6 20

##

, , class = 4

##

mar1

happy married widowed divorced separated never married

very happy 23 2 5 1 5

pretty happy 8 2 3 1 9

not at all happy 1 1 3 0 0

You can use the ftable command to “flatten” the table:

32

ftable(xt2, row.vars=c("class", "mar1"))

happy very happy pretty happy not at all happy

class mar1

1 married 14 33 11

widowed 4 10 6

divorced 8 22 13

separated 3 6 8

never married 8 31 21

2 married 144 200 39

widowed 9 39 14

divorced 27 93 30

separated 6 20 10

never married 40 128 32

3 married 200 263 25

widowed 22 54 14

divorced 34 62 9

separated 3 11 6

never married 27 73 20

4 married 23 8 1

widowed 2 2 1

divorced 5 3 3

separated 1 1 0

never married 5 9 0

The CrossTable function in the gmodels package can also be quite helpful, in that it
a) presents row, column and cell percentages as well as expected counts and χ2 contribu-
tions and b) it can produce tests of independence. This can be used either on raw data
or on existing tables.

library(gmodels)

with(gss, CrossTable(happy, mar1))

##

##

Cell Contents

|-------------------------|

| N |

| Chi-square contribution |

| N / Row Total |

| N / Col Total |

| N / Table Total |

|-------------------------|

##

##

Total Observations in Table: 1916

##

##

| mar1

happy | married | widowed | divorced | separated | never married | Row Total |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

very happy | 381 | 37 | 74 | 13 | 80 | 585 |

| 26.144 | 5.374 | 4.387 | 4.279 | 13.499 | |

| 0.651 | 0.063 | 0.126 | 0.022 | 0.137 | 0.305 |

| 0.396 | 0.209 | 0.239 | 0.173 | 0.203 | |

| 0.199 | 0.019 | 0.039 | 0.007 | 0.042 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

pretty happy | 504 | 105 | 180 | 38 | 241 | 1068 |

| 1.873 | 0.407 | 0.350 | 0.346 | 2.081 | |

| 0.472 | 0.098 | 0.169 | 0.036 | 0.226 | 0.557 |

| 0.524 | 0.593 | 0.583 | 0.507 | 0.612 | |

| 0.263 | 0.055 | 0.094 | 0.020 | 0.126 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

33

not at all happy | 76 | 35 | 55 | 24 | 73 | 263 |

| 23.699 | 4.716 | 3.734 | 18.245 | 6.617 | |

| 0.289 | 0.133 | 0.209 | 0.091 | 0.278 | 0.137 |

| 0.079 | 0.198 | 0.178 | 0.320 | 0.185 | |

| 0.040 | 0.018 | 0.029 | 0.013 | 0.038 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

Column Total | 961 | 177 | 309 | 75 | 394 | 1916 |

| 0.502 | 0.092 | 0.161 | 0.039 | 0.206 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

##

##

with(gss, CrossTable(happy, mar1, expected=TRUE, prop.r=FALSE,

prop.t=FALSE, chisq=TRUE))

##

##

Cell Contents

|-------------------------|

| N |

| Expected N |

| Chi-square contribution |

| N / Col Total |

|-------------------------|

##

##

Total Observations in Table: 1916

##

##

| mar1

happy | married | widowed | divorced | separated | never married | Row Total |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

very happy | 381 | 37 | 74 | 13 | 80 | 585 |

| 293.416 | 54.042 | 94.345 | 22.899 | 120.297 | |

| 26.144 | 5.374 | 4.387 | 4.279 | 13.499 | |

| 0.396 | 0.209 | 0.239 | 0.173 | 0.203 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

pretty happy | 504 | 105 | 180 | 38 | 241 | 1068 |

| 535.672 | 98.662 | 172.240 | 41.806 | 219.620 | |

| 1.873 | 0.407 | 0.350 | 0.346 | 2.081 | |

| 0.524 | 0.593 | 0.583 | 0.507 | 0.612 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

not at all happy | 76 | 35 | 55 | 24 | 73 | 263 |

| 131.912 | 24.296 | 42.415 | 10.295 | 54.082 | |

| 23.699 | 4.716 | 3.734 | 18.245 | 6.617 | |

| 0.079 | 0.198 | 0.178 | 0.320 | 0.185 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

Column Total | 961 | 177 | 309 | 75 | 394 | 1916 |

| 0.502 | 0.092 | 0.161 | 0.039 | 0.206 | |

-----------------|---------------|---------------|---------------|---------------|---------------|---------------|

##

##

Statistics for All Table Factors

##

##

Pearson's Chi-squared test

--

Chi^2 = 115.7517 d.f. = 8 p = 2.493911e-21

##

##

##

You try it

Using the data object that contains the nes1996.dta file, do
the following:

1. Create a cross-tabulation of race and votetri

2. Add to the cross-tabulation above the gender variable.
Print the “flattened” table.

3.1.1 Measures of Association

As you saw above, specifying chisq=T in the call to CrossTable gives you Pearson’s
χ2 statistic. You can also get Fisher’s exact test with fisher=T and McNemar’s test
with mcnemar=T. Many of the other measures of association for cross-tabulations are also

34

available, but not generally in the same place. For example, you can get phi, Cramer’s
V and the contingency coefficient with the assocstats function in the vcd package:

library(vcd)

summary(assocstats(xt1))

##

Call: xtabs(formula = ~happy + mar1, data = gss)

Number of cases in table: 1916

Number of factors: 2

Test for independence of all factors:

Chisq = 115.75, df = 8, p-value = 2.494e-21

X^2 df P(> X^2)

Likelihood Ratio 114.84 8 0

Pearson 115.75 8 0

##

Phi-Coefficient : NA

Contingency Coeff.: 0.239

Cramer's V : 0.174

The vcd package also has a function called Kappa that calculates the κ statistic.
For rank-ordered correlations, the corr.test function has methods spearman and

kendall that produce rank-order correlation statistics

3.2 Continuous-Categorical Measures of Association

t-tests can be done easily in R.

gss$veryhappy <- recode(gss$happy, "'very happy' = 1;

c('pretty happy', 'not at all happy') = 0; else=NA")

ttres <- t.test(realinc ~ veryhappy, data=gss, var.equal=F)

ttres

##

Welch Two Sample t-test

##

data: realinc by veryhappy

t = -5.5683, df = 828.86, p-value = 3.476e-08

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-17000.287 -8138.728

sample estimates:

mean in group 0 mean in group 1

30695.07 43264.58

35

3.3 Linear Models

There are tons of linear models presentation and diagnostic tools in R. We will first look
at how to estimate a linear model using the Duncan data from the car package. These
are OD Duncan’s data on occupational prestige.

type Type of occupation. A factor with the following levels:

'prof', professional and managerial; 'wc', white-collar;

'bc', blue-collar.

income Percent of males in occupation earning $3500 or more in

1950.

education Percent of males in occupation in 1950 who were

high-school graduates.

prestige Percent of raters in NORC study rating occupation as

excellent or good in prestige.

This will give me a chance to show how factors work in the linear model context.
At the heart of the modeling functions in R is the formula. Particularly the dependent

variable is given first then a tilde ~ and the independent variables are then given separated
by +. For example: prestige ~ income + type is a formula. Now, we have to tell R
in what context it should evaluate that formula. For our purposes today, we’ll be using
the lm function. This will estimate an OLS regression (unless otherwise indicated with
weights).

library(car)

data(Duncan)

lm(prestige ~ income + type,data=Duncan)

##

Call:

lm(formula = prestige ~ income + type, data = Duncan)

##

Coefficients:

(Intercept) income typeprof typewc

6.7039 0.6758 33.1557 -4.2772

mod <- lm(prestige ~ income + type,data=Duncan)

summary(mod)

##

Call:

lm(formula = prestige ~ income + type, data = Duncan)

##

Residuals:

36

Min 1Q Median 3Q Max

-23.243 -6.841 -0.544 4.295 32.949

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.70386 3.22408 2.079 0.0439 *

income 0.67579 0.09377 7.207 8.43e-09 ***

typeprof 33.15567 4.83190 6.862 2.58e-08 ***

typewc -4.27720 5.54974 -0.771 0.4453

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 10.68 on 41 degrees of freedom

Multiple R-squared: 0.893,Adjusted R-squared: 0.8852

F-statistic: 114 on 3 and 41 DF, p-value: < 2.2e-16

We have saved our model object as mod. If we want to see what pieces of information are
in the little box labeled mod, we can simply type the following:

names(mod)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "contrasts" "xlevels" "call" "terms"

[13] "model"

3.3.1 Adjusting the base category

It is relatively easy to adjust the base category of the factor here. We simply need to
manipulate the variable’s contrasts. There are many different types of these, but the
one we most usually think of are treatment contrasts. Treatment contrasts make dummy
variables for all but one level of the categorical variable, leaving one out as the base
category. The first level is the one that is left out by default. We can see what the
dummy variables will look like by typing:

contrasts(Duncan$type)

prof wc

bc 0 0

prof 1 0

wc 0 1

We can modify these by using the relevel command. This command takes arguments
- the variable and the new base level (specified as the numeric value or the level label).
For example

37

data(Duncan)

Duncan$type2 <- relevel(Duncan$type, "prof")

lm(prestige ~ income + type2, data=Duncan)

##

Call:

lm(formula = prestige ~ income + type2, data = Duncan)

##

Coefficients:

(Intercept) income type2bc type2wc

39.8595 0.6758 -33.1557 -37.4329

If you wanted deviation or effects coding, you could chose the contr.sum contrasts:

Duncan$type3 <- Duncan$type

contrasts(Duncan$type3) <- 'contr.sum'

lm(prestige ~ type3, data=Duncan)

##

Call:

lm(formula = prestige ~ type3, data = Duncan)

##

Coefficients:

(Intercept) type31 type32

46.62 -23.86 33.82

Typing ?contrasts will give you the help file on the different types of contrasts available
in R.

You try it

Using the data object that contains the nes1996.dta file, do
the following:

1. Estimate and summarize a linear regression of left-
right self-placement on age, education, gender, race (3-
categories) and income.

2. Change the base-category of the education variable
to '3. High school diploma or equivalency te'

and re-estimate the model.

3.3.2 Model Diagnostics

There are both numeric and graphical techniques to help figure out whether there are
problems with model specification. Most of these are in the car package.

38

mod <- lm(prestige ~ income + education + type, data=Duncan)

ncvTest(mod, var.formula = ~ income + education + type)

Non-constant Variance Score Test

Variance formula: ~ income + education + type

Chisquare = 5.729855, Df = 4, p = 0.22025

outlierTest(mod)

rstudent unadjusted p-value Bonferonni p

minister 3.829396 0.00045443 0.02045

39

We can also make some diagnostic plots (added variable plots and component+residual
plots)

avPlots(mod)

−40 −20 0 20 40 60

−
20

−
10

0
10

20
30

40

income | others

pr
es

tig
e

 |
ot

he
rs

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

minister

machinist

RR.engineer

minister

−30 −20 −10 0 10 20

−
20

−
10

0
10

20
30

education | others
pr

es
tig

e
 |

ot
he

rs

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●
●

●

●

●

minister

machinist

contractor

store.manager

−0.4 −0.2 0.0 0.2 0.4 0.6

−
10

0
10

20
30

typeprof | others

pr
es

tig
e

 |
ot

he
rs

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

minister

machinist

store.manager

contractor

−0.4 −0.2 0.0 0.2 0.4 0.6

−
20

−
10

0
10

20

typewc | others

pr
es

tig
e

 |
ot

he
rs

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ministermachinist

conductorstore.clerk

Added−Variable Plots

40

crPlots(mod)

20 40 60 80

−
30

−
20

−
10

0
10

20
30

income

C
om

po
ne

nt
+

R
es

id
ua

l(p
re

st
ig

e)

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

20 40 60 80 100

−
20

−
10

0
10

20
30

40

education

C
om

po
ne

nt
+

R
es

id
ua

l(p
re

st
ig

e)

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

bc prof wc

−
20

−
10

0
10

20
30

40

type

C
om

po
ne

nt
+

R
es

id
ua

l(p
re

st
ig

e)

Component + Residual Plots

41

We can make the residuals-versus-fitted plot to look for patterns in the residuals

residualPlots(mod)

Test stat Pr(>|Test stat|)

income -0.8443 0.4037

education -0.8347 0.4090

type

Tukey test -1.6035 0.1088

20 40 60 80

−
10

0
10

20
30

income

P
ea

rs
on

 r
es

id
ua

ls

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80 100

−
10

0
10

20
30

education

P
ea

rs
on

 r
es

id
ua

ls

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

bc prof wc

−
10

0
10

20
30

type

P
ea

rs
on

 r
es

id
ua

ls

6

21

20 40 60 80 100

−
10

0
10

20
30

Fitted values

P
ea

rs
on

 r
es

id
ua

ls

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

42

Finally, we could make influence plots to look for potential outliers and influential
observations:

influencePlot(mod)

StudRes Hat CookD

minister 3.8293960 0.1912053 0.51680533

conductor -0.5505711 0.3663519 0.03567303

contractor 1.4543682 0.2234009 0.11839260

RR.engineer 1.1339763 0.3146829 0.11725367

machinist 2.8268000 0.0612292 0.08872915

0.05 0.10 0.15 0.20 0.25 0.30 0.35

−
1

0
1

2
3

4

Hat−Values

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

minister

conductor

contractor

RR.engineer

machinist

You try it

Using the data object that contains the nes1996.dta file, do
the following:

1. Use the methods we discussed above to diagnose any
particular problems with the model. What are your
conclusions about model specification?

43

3.3.3 Predict after lm

There are a number of different ways you can get fitted values after you’ve estimated a
linear model. If you only want to see the fitted values for each observation, you can use

data(Duncan)

Duncan$type <- relevel(Duncan$type, "prof")

mod <- lm(prestige ~ income + type, data=Duncan)

summary(mod)

##

Call:

lm(formula = prestige ~ income + type, data = Duncan)

##

Residuals:

Min 1Q Median 3Q Max

-23.243 -6.841 -0.544 4.295 32.949

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.85953 6.16834 6.462 9.53e-08 ***

income 0.67579 0.09377 7.207 8.43e-09 ***

typebc -33.15567 4.83190 -6.862 2.58e-08 ***

typewc -37.43286 5.11026 -7.325 5.75e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 10.68 on 41 degrees of freedom

Multiple R-squared: 0.893,Adjusted R-squared: 0.8852

F-statistic: 114 on 3 and 41 DF, p-value: < 2.2e-16

mod$fitted

accountant pilot architect

81.75848 88.51638 90.54374

author chemist minister

77.02795 83.11006 54.05111

professor dentist reporter

83.11006 93.92269 47.70456

engineer undertaker lawyer

88.51638 68.24269 91.21953

physician welfare.worker teacher

91.21953 67.56690 72.29743

conductor contractor factory.owner

53.78667 75.67637 80.40690

store.manager banker bookkeeper

68.24269 92.57111 22.02456

44

mail.carrier insurance.agent store.clerk

34.86456 39.59509 22.02456

carpenter electrician RR.engineer

20.89544 38.46597 61.44281

machinist auto.repairman plumber

31.03228 21.57123 36.43860

gas.stn.attendant coal.miner streetcar.motorman

16.84070 11.43438 35.08702

taxi.driver truck.driver machine.operator

12.78596 20.89544 20.89544

barber bartender shoe.shiner

17.51649 17.51649 12.78596

cook soda.clerk watchman

16.16491 14.81333 18.19228

janitor policeman waiter

11.43438 29.68070 12.11017

fitted(mod)

accountant pilot architect

81.75848 88.51638 90.54374

author chemist minister

77.02795 83.11006 54.05111

professor dentist reporter

83.11006 93.92269 47.70456

engineer undertaker lawyer

88.51638 68.24269 91.21953

physician welfare.worker teacher

91.21953 67.56690 72.29743

conductor contractor factory.owner

53.78667 75.67637 80.40690

store.manager banker bookkeeper

68.24269 92.57111 22.02456

mail.carrier insurance.agent store.clerk

34.86456 39.59509 22.02456

carpenter electrician RR.engineer

20.89544 38.46597 61.44281

machinist auto.repairman plumber

31.03228 21.57123 36.43860

gas.stn.attendant coal.miner streetcar.motorman

16.84070 11.43438 35.08702

taxi.driver truck.driver machine.operator

12.78596 20.89544 20.89544

barber bartender shoe.shiner

17.51649 17.51649 12.78596

cook soda.clerk watchman

45

16.16491 14.81333 18.19228

janitor policeman waiter

11.43438 29.68070 12.11017

Both of the above commands will produce the same output - a predicted value for each
observation. We could also get fitted values using the predict command which will also
calculate standard errors or confidence bounds.

pred <- predict(mod)

head(pred)

accountant pilot architect author chemist minister

81.75848 88.51638 90.54374 77.02795 83.11006 54.05111

pred.se <- predict(mod, se.fit=TRUE)

head(pred.se$fit)

accountant pilot architect author chemist minister

81.75848 88.51638 90.54374 77.02795 83.11006 54.05111

head(pred.se$se.fit)

[1] 2.523522 2.754890 2.880750 2.561183 2.543959 4.443785

pred.mean.ci <- predict(mod, interval="confidence")

head(pred.mean.ci)

fit lwr upr

accountant 81.75848 76.66212 86.85484

pilot 88.51638 82.95276 94.07999

architect 90.54374 84.72595 96.36154

author 77.02795 71.85554 82.20037

chemist 83.11006 77.97243 88.24769

minister 54.05111 45.07670 63.02551

pred.ind.ci <- predict(mod, interval="prediction")

head(pred.ind.ci)

fit lwr upr

accountant 81.75848 59.59898 103.91798

pilot 88.51638 66.24477 110.78798

architect 90.54374 68.20728 112.88020

author 77.02795 54.85083 99.20507

chemist 83.11006 60.94103 105.27909

minister 54.05111 30.69280 77.40942

Notice, that when the original data are used, the fourth option indicates that these

46

confidence intervals are for future predictions. They are not meant to say something
interesting about the observed data, rather about future or hypothetical cases.

It is also possible to make out-of-sample predictions. To do this, you need to make a
new data frame that has the same variables that are in your model, with values at which
you want to get predictions. Let’s say that above, we wanted to get predictions for a
single observation that had an income value of 50 and had “blue collar” as the type. We
could do the following:

newdat <- data.frame(

income = 50,

type = "bc")

predict(mod, newdat, interval="confidence")

fit lwr upr

1 40.49334 33.64969 47.33698

If we wanted to get predictions for “blue collar” occupations with incomes of 40, 50 and
60, we could do that as follows:

newdat <- data.frame(

income = c(40, 50, 60),

type = c("bc", "bc", "bc"))

predict(mod, newdat, interval="confidence")

fit lwr upr

1 33.73544 28.11384 39.35704

2 40.49334 33.64969 47.33698

3 47.25123 38.93011 55.57236

You try it

Using the data object that contains the nes1996.dta and
the model you estimated above, do the following:

1. Create predictions and confidence intervals for the fol-
lowing two different hypothetical respondents:

• 25 year old, black female with a BA-level degree
whose household income is between $40,000 and
$44,999.

• 75 year old, white male with a high school diploma
whose household income is between $50,000 and
$59,999.

47

3.3.4 Linear Hypothesis Tests

You can use the linearHypothesis command in R to test any hypothesis you want about
any linear combination of parameters (this is akin to lincom in Stata). For example, let’s
say that we wanted to test the hypothesis that βincome = 1, we could do:

linearHypothesis(mod, "income = 1")

Linear hypothesis test

##

Hypothesis:

income = 1

##

Model 1: restricted model

Model 2: prestige ~ income + type

##

Res.Df RSS Df Sum of Sq F Pr(>F)

1 42 6038.3

2 41 4675.2 1 1363.1 11.954 0.001284 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If you wanted to test whether βbc = βwc, you could do:

linearHypothesis(mod, "typebc=typewc")

Linear hypothesis test

##

Hypothesis:

typebc - typewc = 0

##

Model 1: restricted model

Model 2: prestige ~ income + type

##

Res.Df RSS Df Sum of Sq F Pr(>F)

1 42 4742.9

2 41 4675.2 1 67.731 0.594 0.4453

If we wanted to test whether both were simultaneously zero, rather than just the same,
we could use:

linearHypothesis(mod, c("typebc=0", "typewc=0"))

Linear hypothesis test

##

Hypothesis:

typebc = 0

48

typewc = 0

##

Model 1: restricted model

Model 2: prestige ~ income + type

##

Res.Df RSS Df Sum of Sq F Pr(>F)

1 43 13022.8

2 41 4675.2 2 8347.6 36.603 7.575e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Or, we could use Anova to accomplish the same goal:

Anova(mod)

Anova Table (Type II tests)

##

Response: prestige

Sum Sq Df F value Pr(>F)

income 5922.4 1 51.938 8.428e-09 ***

type 8347.6 2 36.603 7.575e-10 ***

Residuals 4675.2 41

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You try it

Using the data object that contains the nes1996.dta and
the model you estimated above, do the following:

1. Test whether the effect of a BA level degree on left-right
self-placement is the same as a high school diploma.

3.3.5 Factors and Interactions

We saw above how to change the base category. We can also discuss some other methods
to present pairwise differences implied by the coefficients (i.e., dealing with the reference
category problem). Here, we’ll use a dataset with some more interesting categorical
variables (interesting = more values).

library(car)

data(Ornstein)

mod <- lm(interlocks ~ nation + sector +

log(assets), data=Ornstein)

summary(mod)

49

##

Call:

lm(formula = interlocks ~ nation + sector + log(assets), data = Ornstein)

##

Residuals:

Min 1Q Median 3Q Max

-41.936 -6.169 -0.140 4.745 47.440

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.4430 4.9272 -5.773 2.47e-08 ***

nationOTH -3.0533 3.0872 -0.989 0.323676

nationUK -5.3294 3.0714 -1.735 0.084030 .

nationUS -8.4913 1.7174 -4.944 1.46e-06 ***

sectorBNK 17.3227 5.1847 3.341 0.000971 ***

sectorCON -2.7127 5.4241 -0.500 0.617463

sectorFIN -1.2745 3.4121 -0.374 0.709100

sectorHLD -2.2916 4.6132 -0.497 0.619835

sectorMAN 1.2440 2.3666 0.526 0.599621

sectorMER -0.8801 3.0346 -0.290 0.772058

sectorMIN 1.7566 2.4448 0.719 0.473153

sectorTRN 1.8888 3.3023 0.572 0.567888

sectorWOD 5.1056 3.0990 1.647 0.100801

log(assets) 5.9908 0.6814 8.792 3.24e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 11.26 on 234 degrees of freedom

Multiple R-squared: 0.5353,Adjusted R-squared: 0.5094

F-statistic: 20.73 on 13 and 234 DF, p-value: < 2.2e-16

Note that 9 of the 10−9
2

= 45 pairwise comparisons are presented in the output. To see
all 45, you could use the glht function (general linear hypothesis test) in the multcomp

package.

library(multcomp)

glht(mod, linfct=mcp(sector = "Tukey"))

##

General Linear Hypotheses

##

Multiple Comparisons of Means: Tukey Contrasts

##

##

Linear Hypotheses:

Estimate

50

BNK - AGR == 0 17.3227

CON - AGR == 0 -2.7127

FIN - AGR == 0 -1.2745

HLD - AGR == 0 -2.2916

MAN - AGR == 0 1.2440

MER - AGR == 0 -0.8801

MIN - AGR == 0 1.7566

TRN - AGR == 0 1.8888

WOD - AGR == 0 5.1056

CON - BNK == 0 -20.0354

FIN - BNK == 0 -18.5972

HLD - BNK == 0 -19.6143

MAN - BNK == 0 -16.0787

MER - BNK == 0 -18.2028

MIN - BNK == 0 -15.5661

TRN - BNK == 0 -15.4339

WOD - BNK == 0 -12.2171

FIN - CON == 0 1.4382

HLD - CON == 0 0.4211

MAN - CON == 0 3.9567

MER - CON == 0 1.8326

MIN - CON == 0 4.4693

TRN - CON == 0 4.6015

WOD - CON == 0 7.8183

HLD - FIN == 0 -1.0171

MAN - FIN == 0 2.5185

MER - FIN == 0 0.3944

MIN - FIN == 0 3.0311

TRN - FIN == 0 3.1633

WOD - FIN == 0 6.3801

MAN - HLD == 0 3.5356

MER - HLD == 0 1.4115

MIN - HLD == 0 4.0482

TRN - HLD == 0 4.1804

WOD - HLD == 0 7.3972

MER - MAN == 0 -2.1241

MIN - MAN == 0 0.5126

TRN - MAN == 0 0.6448

WOD - MAN == 0 3.8616

MIN - MER == 0 2.6367

TRN - MER == 0 2.7690

WOD - MER == 0 5.9857

TRN - MIN == 0 0.1322

WOD - MIN == 0 3.3490

WOD - TRN == 0 3.2168

51

To present these visually, you could use the factorplot function in the package of
the same name.

library(factorplot)

fp <- factorplot(mod, factor.var = "sector")

plot(fp)

B
N

K

C
O

N

F
IN

H
LD

M
A

N

M
E

R

M
IN

T
R

N

W
O

D

TRN

MIN

MER

MAN

HLD

FIN

CON

BNK

AGR −17.32
5.18

2.71
5.42

1.27
3.41

2.29
4.61

−1.24
2.37

0.88
3.03

−1.76
2.44

−1.89
3.30

−5.11
3.10

20.04
7.25

18.60
4.78

19.61
6.28

16.08
5.26

18.20
5.38

15.57
4.98

15.43
5.14

12.22
5.37

−1.44
6.05

−0.42
6.78

−3.96
5.45

−1.83
5.82

−4.47
5.42

−4.60
5.99

−7.82
5.79

1.02
5.05

−2.52
3.47

−0.39
3.78

−3.03
3.22

−3.16
3.67

−6.38
3.81

−3.54
4.67

−1.41
4.96

−4.05
4.68

−4.18
5.07

−7.40
5.02

2.12
3.07

−0.51
2.37

−0.64
3.32

−3.86
3.13

−2.64
3.10

−2.77
3.74

−5.99
3.65

−0.13
3.21

−3.35
3.09

−3.22
3.79

Significantly < 0
Not Significant
Significantly > 0

bold = brow − bcol

ital = SE(brow − bcol)

There are other methods for displaying these types of comparisons (I wrote a paper
about this in the R Journal)

You try it

Using the data object that contains the nes1996.dta and
the model you estimated above, do the following:

1. Look at all of the pairwise differences between educa-
tion level in the most recently estimated model.

2. Present the differences you identify above graphically.
What do you conclude about the effect of education?

Interactions can also be handled easily in R. Simply replace a + between two variables
with a *. This will include both “main” effects and all of the required product regressors.

52

http://journal.r-project.org/archive/2013-2/armstrong.pdf

mod <- lm(prestige ~ income*education + type, data= Duncan)

Recently, Clark, Golder and Milton (JOP) proposed a method for presenting continuous-
by-continuous interactions in linear models. I have implemented their advice in DAMisc’s
DAintfun2 function. First, you’ll need to install the package from GitHub:

library(devtools)

install_github("davidaarmstrong/damisc")

library(DAMisc)

DAintfun2(mod, c("income", "education"), rug=F, hist=T,

scale.hist=.3)

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EDUCATION

C
on

di
tio

na
l E

ffe
ct

 o
f I

N
C

O
M

E
 |

E
D

U
C

AT
IO

N

0
0.

2

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

INCOME

C
on

di
tio

na
l E

ffe
ct

 o
f E

D
U

C
AT

IO
N

 |
IN

C
O

M
E

0
0.

1
When interactions include a continuous variable and a categorical variable, the pre-

sentation becomes a bit more challenging. There are two different types of things we
might want to know - the effect of the continuous variable given then different categories
of the categorical variable or the difference between the categories given the continuous
variable. The intQualQuant function provides all of this information (here, we’ll use the
Prestige data).

mod2 <- lm(prestige ~ income*type + education, data=Prestige)

intQualQuant(mod2,

c("income", "type"),

type="slopes",

plot=FALSE)

53

Conditional Effect of income given type

eff se tstat pvalue

bc 0.0031344 0.0005215 6.010 3.788e-08

prof 0.0006242 0.0002217 2.816 5.957e-03

wc 0.0016489 0.0007089 2.326 2.225e-02

intQualQuant(mod2,

c("income", "type"),

type="slopes",

plot=TRUE)

income

P
re

di
ct

ed
 V

al
ue

s

20

40

60

80

100

120

140

5000 10000 15000 20000 25000

bc
prof
wc

We can also look at the difference between categories given the continuous variable.

intQualQuant(mod2,

c("income", "type"),

n = 3,

type="facs",

plot=FALSE)

Conditional Effect of type given income

54

fit se.fit x contrast lower upper

1 21.016 4.803 1656 prof - bc 11.475 30.556

2 -9.386 4.918 13768 prof - bc -19.156 0.383

3 -39.788 10.725 25879 prof - bc -61.093 -18.484

4 4.677 4.043 1656 wc - bc -3.353 12.708

5 -13.315 7.617 13768 wc - bc -28.446 1.816

6 -31.307 17.967 25879 wc - bc -66.996 4.381

7 -16.338 3.898 1656 wc - prof -24.081 -8.595

8 -3.929 6.659 13768 wc - prof -17.156 9.299

9 8.481 15.307 25879 wc - prof -21.925 38.887

p <- intQualQuant(mod2, c("income", "type"), type="facs", plot=TRUE)

update(p, layout=c(3,1), aspect=1)

income

P
re

di
ct

ed
 D

iff
er

en
ce

−80

−60

−40

−20

0

20

5000 10000 15000 20000 25000

prof − bc

5000 10000 15000 20000 25000

wc − bc

5000 10000 15000 20000 25000

wc − prof

You try it

Using the data object that contains the nes1996.dta and
the model you estimated above, do the following:

1. Estimate a model of left-right self-placement on the
interaction of age and race along with the income, ed-
ucation and gender variables. Figure out the effect of
age given race and the effect of race given age.

3.3.6 Non-linearity: Transformations and Polynomials

As we saw above, functional non-linear transformations (i.e., those that are themselves
functions that return the transformed values, like log(), sqrt()) can be done inside the
model formula. For example:

55

transmod <- lm(prestige ~ log(income) + education + type, data=Prestige)

There are a couple of different functions that will plot model effects - particularly
useful for non-linearities. The effects package has been around a bit longer and applies
to more types of models (though not all of them). The visreg package does similar
things on relatively fewer models. However, the real benefit with the visreg package is
that it will produce ggPlot objects and not just lattice objects, like the effects package.
More on the differences and distinctions between these two later.

From the model above, the effect of income could be plotted with the effects pack-
age.3

library(effects)

plot(predictorEffect("income", transmod, xlevels=25), main="")

income

pr
es

tig
e

30

40

50

60

 5000 10000 15000 20000 25000

library(visreg)

visreg(transmod, "income")

visreg(transmod, "income", gg=TRUE)

3We’ll talk lots more about this and how it works in the visualization part of the workshop.

56

5000 10000 15000 20000 25000

30

40

50

60

income

pr
es

tig
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

30

40

50

60

10000 20000

income

pr
es

tig
e

You could also include transformations (or other mathematical functions) using the
I() function. For example:

transmod2 <- lm(prestige ~ I(1/income^2) + education + type, data=Prestige)

and that effect is just as easily plotted:

plot(predictorEffect("income", transmod2, xlevels=25), main="")

income

pr
es

tig
e

15

20

25

30

35

40

45

50

 5000 10000 15000 20000 25000

Polynomials can be included through the poly() function. By default, this creates
orthogonal polynomials (think of it as using the principal components of your matrix of
polynomial regressors). This has both some benefits and drawbacks, but you can include
the raw values with the argument raw=TRUE.

57

polymod <- lm(prestige ~ poly(income, 3) + education + type, data=Prestige)

summary(polymod)

##

Call:

lm(formula = prestige ~ poly(income, 3) + education + type, data = Prestige)

##

Residuals:

Min 1Q Median 3Q Max

-14.262 -4.297 1.077 3.890 18.086

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.5944 5.5368 1.552 0.12408

poly(income, 3)1 50.0355 9.2846 5.389 5.53e-07 ***

poly(income, 3)2 -23.6628 7.6143 -3.108 0.00252 **

poly(income, 3)3 17.3362 7.5946 2.283 0.02478 *

education 3.3907 0.6333 5.354 6.41e-07 ***

typeprof 6.8031 3.6688 1.854 0.06693 .

typewc -1.6090 2.4391 -0.660 0.51112

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 6.68 on 91 degrees of freedom

(4 observations deleted due to missingness)

Multiple R-squared: 0.8568,Adjusted R-squared: 0.8473

F-statistic: 90.73 on 6 and 91 DF, p-value: < 2.2e-16

Again, the effects can be plotted with the effects package.

plot(predictorEffect("income", polymod, xlevels=25), main="")

58

income

pr
es

tig
e

30

40

50

60

70

 5000 10000 15000 20000 25000

You try it

Using the data object that contains the nes1996.dta, do the
following:

1. Estimate a model of left-right self-placement as a func-
tion of a polynomial in age, education, gender, income
and race.

2. Plot the effect of the polynomial.

3.3.7 Testing Between Models

Nested model testing in R is easy with anova. Before we do that, let’s consider what the
different types of anova and Anova functions do. The anova command (when executed
on a single model) gives Type I sequential sums of squares. This is rarely (if ever) what
we want as social scientists using observational data in models with control variables.
When executed on two models, the anova function just calculates the F -test of the two
models relative to each other. The Anova function calculates either Type II or Type III
sums of squares. The Type II control for lower-order terms, but not higher-order ones.
For example, if you had the model:

y = b0 + b1x1 + b2x2 + b3x1x2 + b4x3 + e,

when testing for the significance of x1 using Type II sums of squares, x2 and x3 would
be controlled for, but not x1x2 (the product regressor). Using Type III sums of squares,
all regressors are controlled for when testing for the significance of any other variable.
Consider one of the models from above:

59

anova(mod2)

Analysis of Variance Table

##

Response: prestige

Df Sum Sq Mean Sq F value Pr(>F)

income 1 14021.6 14021.6 336.555 < 2.2e-16 ***

type 2 7988.5 3994.3 95.873 < 2.2e-16 ***

education 1 1655.5 1655.5 39.736 1.024e-08 ***

income:type 2 890.0 445.0 10.681 6.809e-05 ***

Residuals 91 3791.3 41.7

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Anova(mod2)

Anova Table (Type II tests)

##

Response: prestige

Sum Sq Df F value Pr(>F)

income 1058.8 1 25.4132 2.342e-06 ***

type 591.2 2 7.0947 0.00137 **

education 1068.0 1 25.6344 2.142e-06 ***

income:type 890.0 2 10.6814 6.809e-05 ***

Residuals 3791.3 91

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Anova(mod2, type="III")

Anova Table (Type III tests)

##

Response: prestige

Sum Sq Df F value Pr(>F)

(Intercept) 76.9 1 1.8458 0.1776

income 1504.8 1 36.1180 3.788e-08 ***

type 1003.4 2 12.0427 2.291e-05 ***

education 1068.0 1 25.6344 2.142e-06 ***

income:type 890.0 2 10.6814 6.809e-05 ***

Residuals 3791.3 91

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For two nested models, we could use the anova function:

60

tmp <- Prestige[complete.cases(Prestige[,c("income", "prestige",

"education", "women", "type")]),]

m1 <- lm(prestige ~ income + education, data=tmp)

m2 <- lm(prestige ~ income + education + women + type, data=tmp)

anova(m1, m2, test="F")

Analysis of Variance Table

##

Model 1: prestige ~ income + education

Model 2: prestige ~ income + education + women + type

Res.Df RSS Df Sum of Sq F Pr(>F)

1 95 5272.4

2 92 4679.0 3 593.45 3.8896 0.01149 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For two non-nested models, the lmtest package has a number of options. For example:

m1 <- lm(prestige ~ education + type, data=tmp)

m2 <- lm(prestige ~ income + women, data=tmp)

library(lmtest)

encomptest(m1, m2, Prestige)

Encompassing test

##

Model 1: prestige ~ education + type

Model 2: prestige ~ income + women

Model E: prestige ~ education + type + income + women

Res.Df Df F Pr(>F)

M1 vs. ME 92 -2 10.431 8.258e-05 ***

M2 vs. ME 92 -3 53.481 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

jtest(m1, m2, Prestige)

J test

##

Model 1: prestige ~ education + type

Model 2: prestige ~ income + women

Estimate Std. Error t value Pr(>|t|)

M1 + fitted(M2) 0.33741 0.078230 4.3131 4.006e-05 ***

M2 + fitted(M1) 0.81914 0.064216 12.7559 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coxtest(m1, m2, Prestige)

61

Cox test

##

Model 1: prestige ~ education + type

Model 2: prestige ~ income + women

Estimate Std. Error z value Pr(>|z|)

fitted(M1) ~ M2 -16.196 3.1413 -5.1559 2.525e-07 ***

fitted(M2) ~ M1 -64.119 3.2608 -19.6638 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The games package has some better-known tests, the Vuong test and Clarke’s distri-
bution free test

library(games)

vuong(m1, m2)

##

Vuong test for non-nested models

##

Model 1 log-likelihood: -339

Model 2 log-likelihood: -378

Observations: 98

Test statistic: 3.7

##

Model 1 is preferred (p = 0.00024)

clarke(m1, m2)

##

Clarke test for non-nested models

##

Model 1 log-likelihood: -339

Model 2 log-likelihood: -378

Observations: 98

Test statistic: 74 (76%)

##

Model 1 is preferred (p = 4.2e-07)

62

You try it

Using the data object that contains the nes1996.dta, do the
following:

1. Estimate two models of left-right self-placement:

M1: include age, gender and race

M2: include hhincome and education

2. Test to see whether one model is supported more than
the other.

3.4 GLMs and the Like

3.4.1 Binary DV Models

GLMs (e.g., logit/probit, poisson/negative binomial, gamma) are easy to estimate with
R. You can use the glm() function.

data(Mroz)

logit.mod <- glm(lfp ~ k5 + k618 + log(age) + wc + lwg*asinh(inc),

data=Mroz, family=binomial(link="logit"))

probit.mod <- glm(lfp ~ k5 + k618 + log(age) + wc + lwg*asinh(inc),

data=Mroz, family=binomial(link="probit"))

The effects package is one way of calculating predicted probabilities with measures
of uncertainty:

library(effects)

eff <- predictorEffect("age", logit.mod, focal.levels=10)

summary(eff)

##

age effect

age

30 33 37 40 43 47 50

0.7476576 0.6977984 0.6312423 0.5826375 0.5360439 0.4779514 0.4377960

53 57 60

0.4007029 0.3559769 0.3258431

##

Lower 95 Percent Confidence Limits

age

30 33 37 40 43 47 50

0.6655259 0.6289454 0.5796400 0.5398455 0.4950074 0.4290016 0.3797376

53 57 60

0.3337507 0.2793653 0.2440438

63

##

Upper 95 Percent Confidence Limits

age

30 33 37 40 43 47 50

0.8152209 0.7587753 0.6800070 0.6242201 0.5765981 0.5273284 0.4976097

53 57 60

0.4715795 0.4407484 0.4198332

If you want to calculate effects for a particular type of observation, you need to know
what the columns of the model matrix or design matrix are called. You can find this out
with the following:

names(coef(logit.mod))

[1] "(Intercept)" "k5" "k618" "log(age)"

[5] "wcyes" "lwg" "asinh(inc)" "lwg:asinh(inc)"

You can use these names in a vector that gets passed to given.values:

e <- predictorEffect("age", logit.mod, focal.levels=5,

fixed.predictors=list(

given.values=c(k5 = 0,

k618 = 2, "asinh(inc)" = asinh(10))))

do.call(cbind, summary(e)[c("effect", "lower", "upper")])

effect lower upper

30 0.8713466 0.8096600 0.9151368

38 0.7849160 0.7278793 0.8327449

45 0.7010412 0.6357253 0.7590839

52 0.6163420 0.5283668 0.6973082

60 0.5249076 0.4091994 0.6380018

You try it

Using the data object that contains the nes1996.dta, do the
following:

1. Add to your dataset a new dummy variable that indi-
cates a vote for Bill Clinton (1) versus all other candi-
dates (0).

2. Estimate a logistic regression model of vote for Bill
Clinton on left-right self-placement, age, education,
race, gender and income.

3. What is the effect of education? What is the size in
the gender gap in the probability of voting for Clinton?

64

You might also want to consider first differences between predicted probabilities. This
would be like what the SPost set of functions in Stata do. I wrote a function for the DAMisc
package that simulates confidence intervals for first differences in probabilities based on
the “marginal effects at reasonable values” approach. The glmChange function does
this. Some recent work encourages researchers to adopt an “average marginal effects”
approach. This is what the glmChange2 function does.

glmChange(logit.mod, Mroz, diffchange="sd", sim=TRUE)

$diffs

min max diff lower upper

k5 0.6752487 0.4895261 -0.18572252 -0.25552355 -0.11254854

k618 0.5931192 0.5776770 -0.01544223 -0.09054625 0.05671729

age 0.6463212 0.5275628 -0.11875843 -0.19272858 -0.03908577

wc 0.5854191 0.7698764 0.18445727 0.10769214 0.25920607

lwg 0.5402439 0.6292021 0.08895815 0.01177340 0.16209720

inc 0.6532116 0.5347779 -0.11843371 -0.19326728 -0.04140371

##

$minmax

k5 k618 age wc lwg inc

typical 0.0000000 1.000000 43.00000 no 1.0684031 17.7000

min -0.2619795 0.340063 38.96371 no 0.7746249 11.8826

max 0.2619795 1.659937 47.03629 yes 1.3621813 23.5174

##

attr(,"class")

[1] "change"

glmChange2(logit.mod, "age", Mroz, change="sd")

mean lower upper

age -0.1031133 -0.1405158 -0.06285143

If you like the average marginal effects approach, you can use the aveEffPlot function
from the DAMisc package.

aveEffPlot(logit.mod, "age", Mroz)

65

age

P
re

di
ct

ed
 V

al
ue

0.3

0.4

0.5

0.6

0.7

0.8

30 35 40 45 50 55 60

You could also ask it to just return the values that you could use in your own plot:

aep2 <- aveEffPlot(logit.mod, "age", Mroz, plot=F)

library(ggplot2)

ggplot(aep2, aes(x=s, y=mean, ymin = lower, ymax=upper)) +

geom_ribbon(fill="gray75", alpha=.5) +

geom_line() +

xlab("Age") +

ylab("Predicted Probability of\nParticipating in the Labor Force")

0.3

0.4

0.5

0.6

0.7

0.8

30 40 50 60

Age

P
re

di
ct

ed
 P

ro
ba

bi
lit

y
of

P
ar

tic
ip

at
in

g
in

 th
e

La
bo

r
F

or
ce

You can also get some model fit statistics with:

binfit(logit.mod)

Names1 vals1 Names2 vals2

66

1 Log-Lik Intercept Only: -514.873 Log-Lik Full Model: -452.709

2 D(745): 905.417 LR(7): 124.329

3 Prob > LR: 0.000

4 McFadden's R2: 0.121 McFadden's Adk R2: 0.105

5 ML (Cox-Snell) R2: 0.152 Cragg-Uhler (Nagelkerke) R2: 0.204

6 McKelvey & Zavoina R2: 0.218 Efron's R2: 0.155

7 Count R2: 0.697 Adj Count R2: 0.298

8 BIC: 958.410 AIC: 921.417

pre(logit.mod)

mod1: lfp ~ k5 + k618 + log(age) + wc + lwg * asinh(inc)

mod2: lfp ~ 1

##

Analytical Results

PMC = 0.568

PCP = 0.697

PRE = 0.298

ePMC = 0.509

ePCP = 0.585

ePRE = 0.154

Finally, we could evaluate the interaction in the model in a couple of different ways.
We could look at the effect plot to see whether there is a difference in the effects across
the levels of the conditioning variable.

plot(effect("lwg*asinh(inc)", logit.mod, xlevels=6), type="response", main="")

income

pr
es

tig
e

15

20

25

30

35

40

45

50

 5000 10000 15000 20000 25000

We could also look at the second difference for the effect - the difference in first
differences for the focal variable when holding the conditioning variable at a low value
relative to a high value. The secondDiff() function in the DAMisc package does this. It
calculates the average second difference which is held in the element avg and it calculates
the second difference for each individual observation, held in the element ind.

67

secd <- secondDiff(logit.mod, c("lwg", "inc"), Mroz)

mean(secd$avg > 0)

[1] NaN

mean(secdindpval < .05)

[1] 0

You try it

Using the data object that contains the nes1996.dta, do the
following:

1. Using the model you estimated above, what is the effect
of race on vote? What about gender and income?

2. How well does you model fit?

3.5 Ordinal DV Models

One function for fitting ordinal dv models polr is in the MASS package. This has been
the default, more or less, for years. While this function certainly does what it says, there
are models that have more flexibility in the ordinal package - including the generalized
ordered logit (which allows for the calculation of the Brant test) and mixed ordinal DV
models (which we’ll come back to later on).

library(ordinal)

library(DAMisc)

data(france)

ologit.mod <- clm(retnat ~ lrself + male + age, data=france)

summary(ologit.mod)

formula: retnat ~ lrself + male + age

data: france

##

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 542 -566.76 1143.53 5(0) 3.36e-13 5.7e+04

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

lrself -0.154106 0.037345 -4.127 3.68e-05 ***

male -0.342544 0.162003 -2.114 0.0345 *

age 0.010258 0.004911 2.089 0.0367 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

68

##

Threshold coefficients:

Estimate Std. Error z value

Better|Same -1.6237 0.2951 -5.503

Same|Worse 0.3419 0.2857 1.197

You can also use the effects package here.

eff2 <- effect("lrself", ologit.mod, xlevels=list(lrself=c(1,5,10)))

summary(eff2)

##

lrself effect (probability) for Better

lrself

1 5 10

0.1218185 0.2044194 0.3570088

##

lrself effect (probability) for Same

lrself

1 5 10

0.2351498 0.3025490 0.3326240

##

lrself effect (probability) for Worse

lrself

1 5 10

0.6430316 0.4930316 0.3103672

##

Lower 95 Percent Confidence Limits for Better

lrself

1 5 10

0.08929251 0.17371206 0.26619482

##

Lower 95 Percent Confidence Limits for Same

lrself

1 5 10

0.1906681 0.2582969 0.2861687

##

Lower 95 Percent Confidence Limits for Worse

lrself

1 5 10

0.5693401 0.4462952 0.2233103

##

Upper 95 Percent Confidence Limits for Better

lrself

1 5 10

0.1640583 0.2389850 0.4594081

69

##

Upper 95 Percent Confidence Limits for Same

lrself

1 5 10

0.2863374 0.3507968 0.3825789

##

Upper 95 Percent Confidence Limits for Worse

lrself

1 5 10

0.7105248 0.5398901 0.4133029

The plotting here has more options having to do with how you want multiple lines
plotted. The options are juxtaposed (the default, figure 2(a)), superposed (figure 2(b))
or stacked (figure 2(c)).

These are done with the following commands, respectively. In each of the commands,
the rug plot can be turned off by giving the plot function the argument rug=FALSE.

plot(effect("lrself", ologit.mod, xlevels=25))

plot(effect("lrself", ologit.mod, xlevels=25), multiline=TRUE)

plot(effect("lrself", ologit.mod, xlevels=25), style="stacked")

The clm function also does the generalized ordered logit model wherein some of the
coefficients are allowed to change across response categories. This is essentially a ordinal-
multinomial model hybrid.

gologit.mod <- clm(retnat ~ male + age, nominal = ~ lrself,

data=france)

summary(gologit.mod)

formula: retnat ~ male + age

nominal: ~lrself

data: france

##

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 542 -566.20 1144.40 5(0) 4.44e-14 5.8e+04

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

male -0.345173 0.162037 -2.130 0.0332 *

age 0.010367 0.004912 2.111 0.0348 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

70

Figure 1: Effects plots for Ordered Logistic Regression Models

lrself effect plot

lrself

re
tn

at
 (

pr
ob

ab
ili

ty
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 2 4 6 8 10

 = retnat Better
0.1

0.2

0.3

0.4

0.5

0.6

0.7
 = retnat Same

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 = retnat Worse

(a) Juxtaposed

lrself effect plot

lrself

re
tn

at
 (

pr
ob

ab
ili

ty
)

0.2

0.3

0.4

0.5

0.6

 2 4 6 8 10

retnat
Better
Same

Worse

(b) Superposed

lrself effect plot

lrself

re
tn

at
 (

pr
ob

ab
ili

ty
)

0.0

0.2

0.4

0.6

0.8

1.0

 2 4 6 8 10

Worse
Same
Better

(c) Stacked

##

Threshold coefficients:

Estimate Std. Error z value

Better|Same.(Intercept) -1.78421 0.33463 -5.332

Same|Worse.(Intercept) 0.44284 0.30183 1.467

Better|Same.lrself 0.18569 0.04792 3.875

Same|Worse.lrself 0.13092 0.04290 3.052

71

It is simple to do a test between the of the generalization:

anova(ologit.mod, gologit.mod)

Likelihood ratio tests of cumulative link models:

##

formula: nominal: link: threshold:

ologit.mod retnat ~ lrself + male + age ~1 logit flexible

gologit.mod retnat ~ male + age ~lrself logit flexible

##

no.par AIC logLik LR.stat df Pr(>Chisq)

ologit.mod 5 1143.5 -566.76

gologit.mod 6 1144.4 -566.20 1.1232 1 0.2892

There are also similar functions to those discussed above for binary models for consid-
ering ordinal models. For these functions, though, you’ll have to use the polr function.
For example, we can look at model fit with:

library(MASS)

polr.mod <- polr(retnat ~ lrself + male + age, data=france)

ordfit(polr.mod)

Estimate

Count R2 0.465

Count R2 (Adj) 0.049

ML R2 0.045

McFadden R2 0.021

McFadden R2 (Adj) 0.013

McKelvey & Zavoina R2 0.049

You can also get predicted first differences of both kinds:

print(ordChange(polr.mod, france, diffchange="sd", sim=TRUE))

Better Same Worse

lrself 0.062* 0.010 -0.072*

male 0.030* 0.006 -0.036*

age -0.027* -0.011 0.038*

print(ordChange2(polr.mod, "lrself", france, diffchange="sd"))

Better Same Worse

lrself 0.062* 0.006 -0.068*

72

3.6 Multinomial DV

There are two functions (at least) for estimating the multinomial logistic regression model.
The multinom function in the nnet package is easy to use, but less flexible than other
alternatives. The mlogit function in the package of the same name is more flexible and
not much harder to deal with, though the effects package doesn’t interact well with
output from mlogit, so if you want a traditional effects graph, then you should use the
multinom function. We’ll show an example of that first:

library(nnet)

data(Chile)

mnl.mod <- multinom(vote ~ log(income) + age + sex + education,

data=Chile)

weights: 28 (18 variable)

initial value 3381.171947

iter 10 value 3029.110953

iter 20 value 2962.887890

final value 2962.537389

converged

mnlSig(mnl.mod)

(Intercept) log(income) age sexM educationPS educationS

N 1.079 -0.014 0.011 0.565* 0.359 -0.226

U 1.276 -0.054 0.025* -0.236 -0.993* -0.668*

Y -0.374 0.158 0.024* -0.002 -0.745* -0.889*

You can do predicted probabilities for MNL with the same types of commands as above.

eff3 <- predictorEffect("education", mnl.mod, focal.levels=5)

summary(eff3)

##

education effect (probability) for A

education

P PS S

0.05067585 0.07009838 0.08965062

##

education effect (probability) for N

education

P PS S

0.2578039 0.5108144 0.3637748

##

education effect (probability) for U

education

P PS S

73

0.2435060 0.1247853 0.2208474

##

education effect (probability) for Y

education

P PS S

0.4480143 0.2943020 0.3257271

##

Lower 95 Percent Confidence Limits for A

education

P PS S

0.03638388 0.04900163 0.07242528

##

Lower 95 Percent Confidence Limits for N

education

P PS S

0.2246936 0.4608968 0.3326770

##

Lower 95 Percent Confidence Limits for U

education

P PS S

0.21013254 0.09507359 0.19490609

##

Lower 95 Percent Confidence Limits for Y

education

P PS S

0.4071336 0.2511650 0.2957926

##

Upper 95 Percent Confidence Limits for A

education

P PS S

0.07017302 0.09932928 0.11048479

##

Upper 95 Percent Confidence Limits for N

education

P PS S

0.2939434 0.5605171 0.3960544

##

Upper 95 Percent Confidence Limits for U

education

P PS S

0.2802990 0.1621189 0.2491729

##

Upper 95 Percent Confidence Limits for Y

education

P PS S

74

0.4896098 0.3414692 0.3571545

To use the mlogit function, you need to load the mlogit package and then use the
mlogit.data function to transform your data into a format that the function can use:

data(Chile)

library(mlogit)

chile.ml <- mlogit.data(Chile, shape="wide", choice="vote")

mnl.mod2 <- mlogit(vote ~ 0 | log(income) + age + sex + education,

data= chile.ml)

summary(mnl.mod2)

##

Call:

mlogit(formula = vote ~ 0 | log(income) + age + sex + education,

data = chile.ml, method = "nr")

##

Frequencies of alternatives:

A N U Y

0.073391 0.355474 0.227962 0.343173

##

nr method

6 iterations, 0h:0m:0s

g'(-H)^-1g = 2.07E-06

successive function values within tolerance limits

##

Coefficients :

Estimate Std. Error z-value Pr(>|z|)

N:(intercept) 1.0800825 0.9159147 1.1792 0.2383030

U:(intercept) 1.2768887 0.9587379 1.3318 0.1829117

Y:(intercept) -0.3728719 0.9240548 -0.4035 0.6865679

N:log(income) -0.0138212 0.0950387 -0.1454 0.8843736

U:log(income) -0.0536474 0.0997201 -0.5380 0.5905911

Y:log(income) 0.1580681 0.0958376 1.6493 0.0990794 .

N:age 0.0108886 0.0065742 1.6563 0.0976665 .

U:age 0.0252555 0.0067812 3.7244 0.0001958 ***

Y:age 0.0235988 0.0065503 3.6027 0.0003150 ***

N:sexM 0.5647097 0.1663498 3.3947 0.0006870 ***

U:sexM -0.2362981 0.1761208 -1.3417 0.1796992

Y:sexM -0.0021624 0.1678632 -0.0129 0.9897219

N:educationPS 0.3593581 0.2886259 1.2451 0.2131078

U:educationPS -0.9930253 0.3186012 -3.1168 0.0018281 **

Y:educationPS -0.7446480 0.2933443 -2.5385 0.0111336 *

N:educationS -0.2261543 0.2131965 -1.0608 0.2887906

U:educationS -0.6681666 0.2183014 -3.0608 0.0022078 **

Y:educationS -0.8892455 0.2118204 -4.1981 2.692e-05 ***

75

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Log-Likelihood: -2962.5

McFadden R^2: 0.038623

Likelihood ratio test : chisq = 238.04 (p.value = < 2.22e-16)

If you wanted to test whether the effect of age on the choice of N vs A, was the same
as the effect of age on the choice of Y vs A, then you could use the linearHypothesis

function from the car package.

linearHypothesis(mnl.mod2, "N:age = Y:age")

Linear hypothesis test

##

Hypothesis:

N:age - Y:age = 0

##

Model 1: restricted model

Model 2: vote ~ 0 | log(income) + age + sex + education

##

Res.Df Df Chisq Pr(>Chisq)

1 2422

2 2421 1 12.147 0.0004917 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The mlogit package also does conditional (alternative-specific) logit models, too. In
the dataset Car that comes with the mlogit package, there are several variables, but
the ones we’ll use are college (college education) and coml5 (commute less than 5
miles/day). These variables do not change by individual across choices. The variables
pricez and costz (where z stands in for the choice) vary by choice, but not by individual.
First, we need to make the data amenable to the mlogit function.

data("Car", package = "mlogit")

Car <- mlogit.data(Car, varying = 5:70, shape = "wide", sep = "",

choice = "choice", alt.levels = 1:6)

Now, we can run the model:

carmod <- mlogit(choice ~ cost+price | college + coml5, data=Car)

summary(carmod)

##

Call:

mlogit(formula = choice ~ cost + price | college + coml5, data = Car,

76

method = "nr")

##

Frequencies of alternatives:

1 2 3 4 5 6

0.190589 0.057800 0.288999 0.074989 0.322089 0.065535

##

nr method

5 iterations, 0h:0m:0s

g'(-H)^-1g = 1.63E-05

successive function values within tolerance limits

##

Coefficients :

Estimate Std. Error z-value Pr(>|z|)

2:(intercept) -0.9585274 0.1551549 -6.1779 6.497e-10 ***

3:(intercept) 0.5039224 0.1019177 4.9444 7.638e-07 ***

4:(intercept) -0.6731628 0.1417569 -4.7487 2.047e-06 ***

5:(intercept) 0.6398613 0.0982459 6.5129 7.374e-11 ***

6:(intercept) -0.7045481 0.1414793 -4.9799 6.363e-07 ***

cost -0.0707752 0.0072787 -9.7236 < 2.2e-16 ***

price -0.1916731 0.0265703 -7.2138 5.440e-13 ***

2:college -0.1627939 0.1654676 -0.9838 0.325193

3:college -0.0195603 0.1064413 -0.1838 0.854197

4:college -0.2070364 0.1500382 -1.3799 0.167620

5:college -0.1642816 0.1025024 -1.6027 0.108999

6:college -0.4381037 0.1507657 -2.9059 0.003662 **

2:coml5 -0.3307923 0.1513886 -2.1851 0.028885 *

3:coml5 -0.0948075 0.0912542 -1.0389 0.298833

4:coml5 -0.1767738 0.1347870 -1.3115 0.189687

5:coml5 0.1307450 0.0885182 1.4770 0.139665

6:coml5 0.0042508 0.1389393 0.0306 0.975593

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Log-Likelihood: -7252.5

McFadden R^2: 0.011953

Likelihood ratio test : chisq = 175.48 (p.value = < 2.22e-16)

While the effects package doesn’t work here, there is a function called effects that is
defined for these objects that gives the marginal effect (first derivative of the probability
with respect to a covariate). These values are often better viewed in the aggregate (i.e.,
the average marginal effect).

carme <- effects(carmod, covariate="college", type="rr", data=Car)

me <- round(cbind(colMeans(carme), apply(carme, 2, sd)), 3)

colnames(me) <- c("Effect", "SD")

me

77

Effect SD

1 0.078 0.052

2 -0.040 0.023

3 0.078 0.035

4 -0.074 0.040

5 -0.038 0.025

6 -0.249 0.139

3.7 Survival Models

R has a suite of functions for doing survival analysis. The ones we’ll look at are in the
survival package. In survival analysis, we are trying to predict the length of time it
takes something to happen.

• The thing for which we’re waiting to happen is called a failure (even if it’s a good
thing).

• Not all observations have to fail (though generally we assume that they will fail by
t =∞, but all observations have to have not failed for at least some time (i.e., they
cannot enter the sample with failure).

The basic idea here is that we want to know

Pr(failuret|No Failuret−1)

• Here t is an index for time, implying that our data are temporally organized.

The desired result here is a curve that tells us the probability of surviving until a given
time. This is called a survival curve.

• We might also be interested in the hazard function: the probability that the ob-
servation fails around time t divided by the probability that they are still alive at
time t.

We can capture the probability that observations still at risk at time t (i.e., they did not
fail at time t− 1) will remain alive in time t with:

Ŝ(t) =
∏
ti≤t

ni − di
ni

(1)

Where the numerator indicates the number of at risk observations that remain alive and
the denominator indicates the total number of at risk observations. These probabilities
are multiplied across all previous time-periods. The first thing we need to do is read in
the data and create a survival object

78

dat <- import("cabinet2.dta")

dat$invest <- factorize(dat$invest)

S <- Surv(dat$durat, dat$censor)

The empirical (Kaplan-Meier) curve can be made with R’s survival package.

library(survival)

out <- survfit(S ~ 1)

plot(out)

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

We can also plot empirical curves by other covariates:

out2 <- survfit(

Surv(durat, censor) ~ invest,

data=dat)

plot(out2, col=c("black", "red"))

legend("topright", c("No Investiture",

"Investiture"), col=c("black", "red"),

lty = c(1,1), inset=.01)

79

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No Investiture
Investiture

If we want a more inferential method, we can estimate a survival regression model.
The simplest parametric model is the exponential model, where exponential refers to the
distribution.

• The exponential distribution has one parameter, the rate λ.

• Here, h(t) = λ and the expected duration time is 1
λ
.

• S(t) = exp(−λ(t))

• f(t) = λ(t)exp(−λ(t))

We can parameterize the distribution by making λ a function of covariates in the follow-
ing way: λ = exp(−xβ) = h(t|X).

mod <- survreg(Surv(durat, censor) ~ invest, data=dat,

dist="exponential")

summary(mod)

##

Call:

survreg(formula = Surv(durat, censor) ~ invest, data = dat, dist = "exponential")

Value Std. Error z p

(Intercept) 3.3400 0.0854 39.09 < 2e-16

investhas investiture requirement -0.5931 0.1242 -4.78 1.8e-06

##

Scale fixed at 1

##

Exponential distribution

Loglik(model)= -1055.4 Loglik(intercept only)= -1066.6

Chisq= 22.24 on 1 degrees of freedom, p= 2.4e-06

80

Number of Newton-Raphson Iterations: 4

n= 303

We could then make a plot of the survival curves as a function of investitute (invest).

termplot(mod, dat, term=1, se=2)

−
0.

4
−

0.
2

0.
0

0.
2

invest

P
ar

tia
l f

or
 in

ve
st

no investiture requirement has investiture requirement

We could also use continuous variables in our models and make plots of their effects,
too.

mod2 <- survreg(Surv(durat, censor) ~ invest + polar, data=dat,

dist="exponential")

tmp <- data.frame(

invest = factor(c(0), levels=c(0,1),

labels=levels(dat$invest)),

polar = c(5,15,25))

p <- seq(.99,0,by=-.01)

preds <- predict(mod2, newdata=tmp,

type="quantile", p=p)

plot.data <- data.frame(

p.fail = rep(p, each=nrow(preds)),

time = c(preds))

plot.data$polar <- rep(

tmp$polar, ncol(preds))

plot.data <- plot.data[

which(plot.data$time < 60),]

ggplot(plot.data, aes(x=time, y=1-p.fail,

colour=as.factor(polar))) +

81

geom_line() +

scale_colour_discrete(name="Polarization")

0.00

0.25

0.50

0.75

1.00

0 20 40 60

time

1
−

 p
.fa

il

Polarization

5

15

25

The exponential model assumes a constant hazard over time.

• Here, the baseline hazard is thought to be always increasing or always decreasing
(i.e., monotonic, including flat [like the exponential]).

• Here, the hazard is given by h(t) : λp(λt)p−1 for λ > 0, t > 0, p > 0.

• p is the shape parameter, where p > 1 indicates increasing hazard with time, p < 1
indicates decreasing hazard with time and p = 1 indicates constant hazard over
time.

• The survivor function is S(t) = exp(−(λt)p).

• The hazard function is ptp−1exp(αx)

• The Weibull model, though more flexible than the exponential model, is still a
proportional hazards model.

There are two different parameterizations of the model, the Proportional Hazards
(PH) parameterization and the Accelerated Failure Time (AFT) parameterization.

PH AFT
λ exp(xb) exp(−pxb)
h(t) pλtp−1 pλtp−1

S(t) exp(−λtp) exp(−λtp)
E(T) exp

(
−1
p
xb
)

Γ
(

1 + 1
p

)
exp(xb)Γ

(
1 + 1

p

)

82

mod3 <- survreg(Surv(durat, censor) ~ invest + polar, data=dat,

dist="weibull")

summary(mod3)

##

Call:

survreg(formula = Surv(durat, censor) ~ invest + polar, data = dat,

dist = "weibull")

Value Std. Error z p

(Intercept) 3.63341 0.08541 42.54 < 2e-16

investhas investiture requirement -0.30063 0.11397 -2.64 0.00835

polar -0.03014 0.00432 -6.98 2.9e-12

Log(scale) -0.17605 0.05035 -3.50 0.00047

##

Scale= 0.839

##

Weibull distribution

Loglik(model)= -1031.1 Loglik(intercept only)= -1065.9

Chisq= 69.62 on 2 degrees of freedom, p= 7.6e-16

Number of Newton-Raphson Iterations: 5

n= 303

Here, the Scale term is 1
p
, so p = 1.19, meaning increasing hazards with time. Fur-

ther, R gives you the AFT parameterization.

The weibull and exponential models assume a monotonic form of the baseline hazard
(i.e., the hazard when all variables are zero).

• Further, the baseline hazard is assumed to have a particular distributional form
based on the distribution chosen.

• The Cox model assumes nothing about the functional or distributional form of the
baseline hazard h0(t)

In the Cox model, the hazard is given by:

hi(t) = exp(xβ)h0(t) (2)

Here, h0(t) is not parameterized - there are no distributional assumptions made about
it.

mod <- coxph(Surv(durat, censor) ~ invest + polar, data=dat)

summary(mod)

Call:

coxph(formula = Surv(durat, censor) ~ invest + polar, data = dat)

##

83

n= 303, number of events= 260

##

coef exp(coef) se(coef) z

investhas investiture requirement 0.353460 1.423985 0.135881 2.601

polar 0.034121 1.034710 0.005317 6.417

Pr(>|z|)

investhas investiture requirement 0.00929 **

polar 1.39e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

exp(coef) exp(-coef) lower .95 upper .95

investhas investiture requirement 1.424 0.7023 1.091 1.859

polar 1.035 0.9665 1.024 1.046

##

Concordance= 0.648 (se = 0.017)

Rsquare= 0.187 (max possible= 1)

Likelihood ratio test= 62.83 on 2 df, p=2e-14

Wald test = 68.48 on 2 df, p=1e-15

Score (logrank) test = 71.58 on 2 df, p=3e-16

library(survminer)

tmp <- data.frame(

invest = factor(c(0), levels=c(0,1),

labels=levels(dat$invest)),

polar = c(5,15,25))

sfmod <- survfit(mod, newdata=tmp)

ggsurvplot(sfmod, data=tmp)$plot +

scale_colour_discrete(name="Polarization", labels = c("5", "15", "25")) +

scale_fill_discrete(name="Polarization", labels = c("5", "15", "25"))

++ +++ +++++
++++++ + +

++ +++ +++++
++++++ + +

++ +++ +++++++++++ + +

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Polarization + + +5 15 25

84

3.8 Multilevel Models

R has good functionality when it comes to multilevel models. There are options for
estimating linear and non-linear GLMs as well as ordinal and multinomial models (in a
somewhat different context). We’re going to use the mlbook data from the second edition
of Tom Snijders and Roel Bosker’s book “Multilevel Analysis”. For those interested,
there are great ML resources for R on the book’s website: https://www.stats.ox.ac.

uk/~snijders/mlbook.htm#data.

mlbook <- import("mlbook2_r.dat", header=T)

The main package gor estimating multilevel models (in the frequentist context, at
least) is the lme4 package. First, we’ll just talk about estimating a two-level model with
only level-1 covariates.

library(lme4)

m1 <- lmer(langpost ~ iq_verb + sch_iqv + (1|schoolnr), data=mlbook)

summary(m1)

Linear mixed model fit by REML ['lmerMod']

Formula: langpost ~ iq_verb + sch_iqv + (1 | schoolnr)

Data: mlbook

##

REML criterion at convergence: 24893.9

##

Scaled residuals:

Min 1Q Median 3Q Max

-4.2201 -0.6399 0.0631 0.7054 3.2173

##

Random effects:

Groups Name Variance Std.Dev.

schoolnr (Intercept) 8.785 2.964

Residual 40.442 6.359

Number of obs: 3758, groups: schoolnr, 211

##

Fixed effects:

Estimate Std. Error t value

(Intercept) 41.1132 0.2329 176.526

iq_verb 2.4536 0.0555 44.212

sch_iqv 1.3127 0.2627 4.997

##

Correlation of Fixed Effects:

(Intr) iq_vrb

iq_verb -0.007

sch_iqv 0.043 -0.209

85

https://www.stats.ox.ac.uk/~snijders/mlbook.htm#data
https://www.stats.ox.ac.uk/~snijders/mlbook.htm#data

What you’ll notice is that there are no p-values on the model output summary. To
some in the R community, this is a feature rather than a flaw because there is debate
about what the appropriate reference distribution is for these tests. However, that debate
doesn’t help you understand whether things are significant or not. To solve this problem,
there is a function package called lmerTest, which implements a test of these coefficients.
Once you load the package, you simply estimate the lmer model again and this time when
you summarize it, it will show you p-values.4

library(lmerTest)

m1 <- lmer(langpost ~ iq_verb + sex + ses + (1|schoolnr), data=mlbook)

summary(m1)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: langpost ~ iq_verb + sex + ses + (1 | schoolnr)

Data: mlbook

##

REML criterion at convergence: 24572.4

##

Scaled residuals:

Min 1Q Median 3Q Max

-4.1030 -0.6321 0.0717 0.6914 3.4569

##

Random effects:

Groups Name Variance Std.Dev.

schoolnr (Intercept) 9.402 3.066

Residual 36.795 6.066

Number of obs: 3758, groups: schoolnr, 211

##

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 3.994e+01 2.560e-01 2.759e+02 156.01 <2e-16 ***

iq_verb 2.288e+00 5.427e-02 3.706e+03 42.17 <2e-16 ***

sex 2.408e+00 2.030e-01 3.624e+03 11.86 <2e-16 ***

ses 1.631e-01 1.103e-02 3.739e+03 14.78 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Correlation of Fixed Effects:

(Intr) iq_vrb sex

iq_verb -0.014

sex -0.381 0.034

ses 0.024 -0.292 -0.031

4You only have to estimate the model once after the package is loaded. We’re only estimating it again
because the package hadn’t been loaded yet.

86

The effects package works here, too.

e <- predictorEffect("iq_verb", m1)

plot(e, main = "", xlab="Verbal IQ Score",

ylab = "Predicted Language Test Score")

Verbal IQ Score

P
re

di
ct

ed
 L

an
gu

ag
e

Te
st

 S
co

re

25

30

35

40

45

50

55

−8 −6 −4 −2 0 2 4 6

Including level-2 variables and even cross-level interactions is also easy here.

m2 <- lmer(langpost ~ iq_verb*sch_iqv + sex + ses + sch_ses + minority + sch_min + (1|schoolnr), data=mlbook)

summary(m2)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: langpost ~ iq_verb * sch_iqv + sex + ses + sch_ses + minority +

sch_min + (1 | schoolnr)

Data: mlbook

##

REML criterion at convergence: 24550.8

##

Scaled residuals:

Min 1Q Median 3Q Max

-4.1157 -0.6327 0.0673 0.6924 3.6143

##

Random effects:

Groups Name Variance Std.Dev.

schoolnr (Intercept) 8.465 2.909

Residual 36.747 6.062

Number of obs: 3758, groups: schoolnr, 211

##

Fixed effects:

87

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 40.03585 0.26867 273.57904 149.017 < 2e-16 ***

iq_verb 2.23924 0.05560 3548.19312 40.277 < 2e-16 ***

sch_iqv 1.16111 0.31355 231.81828 3.703 0.000266 ***

sex 2.41326 0.20280 3628.81491 11.900 < 2e-16 ***

ses 0.16566 0.01148 3543.52242 14.436 < 2e-16 ***

sch_ses -0.09175 0.04432 228.02804 -2.070 0.039547 *

minority 0.11470 0.57617 3582.24576 0.199 0.842213

sch_min 1.19596 1.89132 269.87733 0.632 0.527698

iq_verb:sch_iqv -0.18322 0.05569 3332.83260 -3.290 0.001012 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Correlation of Fixed Effects:

(Intr) iq_vrb sch_qv sex ses sch_ss minrty sch_mn

iq_verb -0.023

sch_iqv -0.093 -0.169

sex -0.368 0.034 -0.002

ses 0.012 -0.265 0.044 -0.027

sch_ses 0.000 0.064 -0.473 -0.006 -0.256

minority 0.011 0.116 -0.034 0.003 0.086 -0.017

sch_min -0.346 -0.042 0.258 0.016 -0.023 0.081 -0.274

iq_vrb:sch_ -0.104 0.057 0.089 -0.011 -0.014 -0.012 -0.094 -0.115

You can also plot the effect of the cross-level interaction:

e <- effect("iq_verb*sch_iqv", m2,

xlevels=list(sch_iqv = c(-3,-2,-1,0,1,2),

iq_verb = seq(-8, 6, length=25)))

plot(e, as.table=T,

main = "", xlab="Verbal IQ Score",

ylab = "Predicted Language Test Score")

88

Verbal IQ Score

P
re

di
ct

ed
 L

an
gu

ag
e

Te
st

 S
co

re

20

30

40

50

 = sch_iqv −3

−8 −6 −4 −2 0 2 4 6

 = sch_iqv −2 = sch_iqv −1

−8 −6 −4 −2 0 2 4 6

 = sch_iqv 0 = sch_iqv 1

−8 −6 −4 −2 0 2 4 6

20

30

40

50

 = sch_iqv 2

With one little command, you could also add group-means of variables to the dataset:

addGmean <- function(vars, groupvars, data, stat = "mean", na.rm=TRUE, ...){
makes sure the plyr package is loaded

require(plyr)

creates a formula from the vector of input variables.

form <- as.formula(paste(" ~ ", paste(vars, collapse="+"), sep=""))

creates the design matrix from the formula.

X <- model.matrix(form, data)[,-1]

creates a unique grouping variable based on

the input grouping variables.

g <- apply(data[, groupvars, drop=FALSE], 1, paste, collapse=":")

calculates the statistic for each variable for each group

bys <- by(X, list(g), apply, 2, stat, na.rm=na.rm, ...)

creates a matrix from the results.

bys <- do.call(rbind, bys)

adds a variable "g" to the data set that is just a copy of

the grouping variable

data$g <- g

converts the matrix of results into a data frame.

meandata <- as.data.frame(bys)

appends "_gm" to the end of each variable name

names(meandata) <- paste(names(meandata), "_gm", sep="")

puts the grouping variable into the dataset.

meandata$g <- rownames(meandata)

merges the individual and group-level data together

out <- join(data, meandata, by="g")

returns the merged data,

return(out)

}

89

If you copy and paste the above command into R, it will make it available to you
(we’ll talk more later on about how you could always make sure it was loaded). Then,
you could use the command to add group means to you dataset and then make both the
between and within variables.

new <- addGmean(c("iq_verb", "ses", "sex", "minority"),

"schoolnr", mlbook)

new$iqv_w <- new$iq_verb - new$iq_verb_gm

new$sex_w <- new$sex - new$sex_gm

new$ses_w <- new$ses - new$ses_gm

new$min_w <- new$minority - new$minority_gm

m3 <- lmer(langpost ~ iqv_w + iq_verb_gm + sex_w + sex_gm +

min_w + minority_gm + ses_w + ses_gm + (1|schoolnr), data=new)

summary(m3)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula:

langpost ~ iqv_w + iq_verb_gm + sex_w + sex_gm + min_w + minority_gm +

ses_w + ses_gm + (1 | schoolnr)

Data: new

##

REML criterion at convergence: 24555.3

##

Scaled residuals:

Min 1Q Median 3Q Max

-4.1048 -0.6299 0.0708 0.6891 3.4571

##

Random effects:

Groups Name Variance Std.Dev.

schoolnr (Intercept) 8.838 2.973

Residual 36.793 6.066

Number of obs: 3758, groups: schoolnr, 211

##

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 39.35372 0.87775 224.14387 44.835 <2e-16 ***

iqv_w 2.25023 0.05557 3541.36099 40.495 <2e-16 ***

iq_verb_gm 3.47030 0.31195 219.02545 11.125 <2e-16 ***

sex_w 2.38858 0.20436 3541.36099 11.688 <2e-16 ***

sex_gm 3.54642 1.72557 224.87064 2.055 0.041 *

min_w -0.06974 0.57535 3541.36099 -0.121 0.904

minority_gm 0.56204 1.89904 222.00697 0.296 0.768

ses_w 0.16513 0.01148 3541.36099 14.380 <2e-16 ***

ses_gm 0.06908 0.04421 199.21218 1.562 0.120

90

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Correlation of Fixed Effects:

(Intr) iqv_w iq_vr_ sex_w sex_gm min_w mnrty_ ses_w

iqv_w 0.000

iq_verb_gm -0.058 0.000

sex_w 0.000 0.035 0.000

sex_gm -0.958 0.000 0.027 0.000

min_w 0.000 0.122 0.000 0.003 0.000

minority_gm -0.214 0.000 0.258 0.000 0.107 0.000

ses_w 0.000 -0.264 0.000 -0.027 0.000 0.085 0.000

ses_gm 0.106 0.000 -0.498 0.000 -0.108 0.000 0.074 0.000

You could even test the equivalence of the between and within effects with linearHypothesis.

linearHypothesis(m3, "iqv_w = iq_verb_gm")

Linear hypothesis test

##

Hypothesis:

iqv_w - iq_verb_gm = 0

##

Model 1: restricted model

Model 2: langpost ~ iqv_w + iq_verb_gm + sex_w + sex_gm + min_w + minority_gm +

ses_w + ses_gm + (1 | schoolnr)

##

Df Chisq Pr(>Chisq)

1

2 1 14.826 0.0001179 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(m3, "min_w = minority_gm")

Linear hypothesis test

##

Hypothesis:

min_w - minority_gm = 0

##

Model 1: restricted model

Model 2: langpost ~ iqv_w + iq_verb_gm + sex_w + sex_gm + min_w + minority_gm +

ses_w + ses_gm + (1 | schoolnr)

##

Df Chisq Pr(>Chisq)

1

2 1 0.1014 0.7502

91

Adding random coefficients is as easy as adding another variable to the formula inside
the random component. For example, if we wanted to add a random coefficient for iqv_w
and allow that to be predicted by iq_verb_gm, then we could do that as follows:

m4 <- lmer(langpost ~ iqv_w*iq_verb_gm + sex_w + sex_gm +

min_w + minority_gm + ses_w + ses_gm + (1 + iqv_w|schoolnr),

data=new)

summary(m4)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula:

langpost ~ iqv_w * iq_verb_gm + sex_w + sex_gm + min_w + minority_gm +

ses_w + ses_gm + (1 + iqv_w | schoolnr)

Data: new

##

REML criterion at convergence: 24526.7

##

Scaled residuals:

Min 1Q Median 3Q Max

-4.1201 -0.6297 0.0726 0.6835 3.0316

##

Random effects:

Groups Name Variance Std.Dev. Corr

schoolnr (Intercept) 8.946 2.9910

iqv_w 0.188 0.4335 -0.70

Residual 36.083 6.0069

Number of obs: 3758, groups: schoolnr, 211

##

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 39.22722 0.84962 232.30831 46.170 <2e-16 ***

iqv_w 2.27104 0.06397 197.15338 35.500 <2e-16 ***

iq_verb_gm 3.43997 0.30715 228.15952 11.200 <2e-16 ***

sex_w 2.37629 0.20346 3536.35974 11.680 <2e-16 ***

sex_gm 3.97564 1.66790 232.32685 2.384 0.0179 *

min_w 0.12227 0.58238 3273.74604 0.210 0.8337

minority_gm -1.19277 1.78364 194.44191 -0.669 0.5045

ses_w 0.16626 0.01143 3536.93552 14.545 <2e-16 ***

ses_gm 0.04483 0.04210 196.29448 1.065 0.2882

iqv_w:iq_verb_gm -0.13398 0.06995 211.18343 -1.915 0.0568 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Correlation of Fixed Effects:

(Intr) iqv_w iq_vr_ sex_w sex_gm min_w mnrty_ ses_w ses_gm

92

iqv_w -0.068

iq_verb_gm -0.049 -0.009

sex_w 0.000 0.030 0.004

sex_gm -0.956 -0.013 0.020 0.000

min_w -0.010 0.101 0.019 0.006 0.005

minority_gm -0.205 -0.013 0.247 0.000 0.101 0.047

ses_w 0.006 -0.229 0.008 -0.025 -0.006 0.084 -0.002

ses_gm 0.101 -0.001 -0.484 -0.006 -0.102 -0.008 0.070 -0.015

iqv_w:q_vr_ -0.003 0.023 -0.227 -0.022 0.004 -0.101 -0.029 -0.017 -0.028

The structure of the formula makes it easy to also add either fully or partially crossed
random effects. For example, in a time-series cross-sectional dataset, you might want
random effects for both unit and time.

tscs <- import("ajpsdata.dta")

mod <- lmer(sd ~ cwarcow + iwarcow + milcontr + logpop +

logpcgnp + demtri + (1|ccode) + (1|year), data=tscs)

summary(mod)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: sd ~ cwarcow + iwarcow + milcontr + logpop + logpcgnp + demtri +

(1 | ccode) + (1 | year)

Data: tscs

##

REML criterion at convergence: 5159.5

##

Scaled residuals:

Min 1Q Median 3Q Max

-4.2793 -0.5385 -0.0518 0.4999 4.7932

##

Random effects:

Groups Name Variance Std.Dev.

ccode (Intercept) 0.22291 0.4721

year (Intercept) 0.05445 0.2334

Residual 0.37409 0.6116

Number of obs: 2550, groups: ccode, 147; year, 21

##

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 0.88832 0.46391 193.41774 1.915 0.05699 .

cwarcow 1.08027 0.06668 2373.98862 16.200 < 2e-16 ***

iwarcow 0.21503 0.07509 2531.99207 2.864 0.00422 **

milcontr 0.21214 0.05035 2016.46616 4.214 2.62e-05 ***

logpop 0.17633 0.02557 169.32743 6.897 1.01e-10 ***

logpcgnp -0.18733 0.02622 403.56501 -7.144 4.27e-12 ***

93

demtri -0.39198 0.04228 873.72373 -9.271 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Correlation of Fixed Effects:

(Intr) cwarcw iwarcw mlcntr logpop lgpcgn

cwarcow 0.010

iwarcow 0.033 0.032

milcontr -0.099 0.056 -0.024

logpop -0.907 -0.061 -0.027 0.012

logpcgnp -0.462 0.072 -0.050 0.112 0.079

demtri 0.095 0.023 0.057 0.265 -0.008 -0.350

There are also functions that will do random effects models (particularly random
intercepts) for ordinal and nominal data, too.

If you wanted to be Bayesian instead, you could use the brms package:

library(brms)

m3a <- brm(langpost ~ iqv_w + iq_verb_gm + sex_w + sex_gm +

min_w + minority_gm + ses_w + ses_gm + (1|schoolnr), data=new, chains=2)

Then, we can summarize the model and test between versus within effects.

summary(m3a)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: langpost ~ iqv_w + iq_verb_gm + sex_w + sex_gm + min_w + minority_gm + ses_w + ses_gm + (1 | schoolnr)

Data: new (Number of observations: 3758)

Samples: 2 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup samples = 2000

##

Group-Level Effects:

~schoolnr (Number of levels: 211)

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sd(Intercept) 2.99 0.19 2.63 3.37 621 1.00

##

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 39.30 0.86 37.69 40.97 677 1.00

iqv_w 2.25 0.06 2.14 2.36 3170 1.00

iq_verb_gm 3.47 0.30 2.84 4.05 493 1.00

sex_w 2.39 0.20 2.00 2.78 3003 1.00

sex_gm 3.66 1.72 0.41 6.98 675 1.00

min_w -0.08 0.59 -1.28 1.06 4542 1.00

minority_gm 0.63 1.87 -3.01 4.26 770 1.01

94

ses_w 0.17 0.01 0.14 0.19 2997 1.00

ses_gm 0.07 0.04 -0.02 0.16 494 1.00

##

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

sigma 6.07 0.07 5.94 6.22 3293 1.00

##

Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample

is a crude measure of effective sample size, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

hypothesis(m3a, "iqv_w = iq_verb_gm")

Hypothesis Tests for class b:

Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio

1 (iqv_w)-(iq_verb_gm) = 0 -1.22 0.31 -1.83 -0.6 NA

Post.Prob Star

1 NA *

'*': The expected value under the hypothesis lies outside the 95%-CI.

Posterior probabilities of point hypotheses assume equal prior probabilities.

One of the big benefits of the brm function is that it fits a number of random-effect
models that takes advantage of the ease of specifying these models in the Bayesian context.
These include all of the usual GLMs, but also zero-inflated and hurdle poisson and NB
models, multinomial and ordered dependent variables as well as exponential and Weibull
models (and many others). This is a really flexible modeling strategy that can be accessed
and engaged pretty simply.

3.9 Factor Analysis and SEM

One of the places where development continues rapidly is around measurement and latent
variable issues. First, we’ll talk about factor analysis and then move on to the SEM
setting. While R has a bult-in factor analysis routine called factanal, there is a more
flexible routine in the psych pacakge called fa.5

We’ll start with factor analysis by using some data on political democracy from Ken
Bollen.

library(lavaan)

data(PoliticalDemocracy)

library(psych)

fa_dem65 <- fa(PoliticalDemocracy[,c("y5", "y6", "y7", "y8")],

SMC=TRUE, nfactors=1, fm="wls", scores="regression", cor="mixed")

5Note, that you’ve got access to the eigen decomposition routine with the eigen function and the
singular value decomposition function with svd. There is also princomp, a principal components routine.

95

##

mixed.cor is deprecated, please use mixedCor.

fa_dem65

Factor Analysis using method = wls

Call: fa(r = PoliticalDemocracy[, c("y5", "y6", "y7", "y8")], nfactors = 1,

scores = "regression", SMC = TRUE, fm = "wls", cor = "mixed")

Standardized loadings (pattern matrix) based upon correlation matrix

WLS1 h2 u2 com

y5 0.75 0.56 0.44 1

y6 0.79 0.62 0.38 1

y7 0.82 0.67 0.33 1

y8 0.89 0.80 0.20 1

##

WLS1

SS loadings 2.65

Proportion Var 0.66

##

Mean item complexity = 1

Test of the hypothesis that 1 factor is sufficient.

##

The degrees of freedom for the null model are 6 and the objective function was 2.29 with Chi Square of 164.19

The degrees of freedom for the model are 2 and the objective function was 0.09

##

The root mean square of the residuals (RMSR) is 0.04

The df corrected root mean square of the residuals is 0.07

##

The harmonic number of observations is 75 with the empirical chi square 1.58 with prob < 0.45

The total number of observations was 75 with Likelihood Chi Square = 6.31 with prob < 0.043

##

Tucker Lewis Index of factoring reliability = 0.917

RMSEA index = 0.176 and the 90 % confidence intervals are 0.027 0.329

BIC = -2.32

Fit based upon off diagonal values = 1

Measures of factor score adequacy

WLS1

Correlation of (regression) scores with factors 0.95

Multiple R square of scores with factors 0.90

Minimum correlation of possible factor scores 0.80

The scores are stored as the scores element of the created object (in this case,
fa_dem65). The scores element will be a N × #factors matrix of scores, so it can
be directly included in the original data. For example:

96

fa_dem60 <- fa(PoliticalDemocracy[,c("y1", "y2", "y3", "y4")],

SMC=TRUE, nfactors=1, fm="wls", scores="regression", cor="mixed")

##

mixed.cor is deprecated, please use mixedCor.

fa_ind60 <- fa(PoliticalDemocracy[,c("x1", "x2", "x3")],

SMC=TRUE, nfactors=1, fm="wls", scores="regression", cor="mixed")

##

mixed.cor is deprecated, please use mixedCor.

PoliticalDemocracy$dem65 <- c(fa_dem65$scores)

PoliticalDemocracy$dem60 <- c(fa_dem60$scores)

PoliticalDemocracy$ind60 <- c(fa_ind60$scores)

The most robust and flexible package for doing SEMs in R is called lavaan, which has
been in development for some time, but is moving toward being a one-for-one replacement
for MPlus, which would be a big cost savings for lots of people. Lavaan has both CFA
and SEM capabilities. The main parts of the model code are the =~ which identifies
the latent variables (LHS) and their indicators (RHS), the ~~ which frees variances or
covariances to be estimates and ~, which defines the predictive part of the models that
include the latent variables. Here’s an example from Bollen’s book.

library(lavaan)

model <- '

measurement model

ind60 =~ x1 + x2 + x3

dem60 =~ y1 + y2 + y3 + y4

dem65 =~ y5 + y6 + y7 + y8

regressions

dem60 ~ a1*ind60

dem65 ~ b1*ind60 + b2*dem60

residual correlations

y1 ~~ y5

y2 ~~ y4 + y6

y3 ~~ y7

y4 ~~ y8

y6 ~~ y8

'

fit <- sem(model, data=PoliticalDemocracy, mimic="MPlus")

summary(fit)

lavaan 0.6-3 ended normally after 83 iterations

##

Optimization method NLMINB

97

Number of free parameters 42

##

Number of observations 75

Number of missing patterns 1

##

Estimator ML

Model Fit Test Statistic 38.125

Degrees of freedom 35

P-value (Chi-square) 0.329

##

Parameter Estimates:

##

Information Observed

Observed information based on Hessian

Standard Errors Standard

##

Latent Variables:

Estimate Std.Err z-value P(>|z|)

ind60 =~

x1 1.000

x2 2.180 0.139 15.685 0.000

x3 1.819 0.152 11.949 0.000

dem60 =~

y1 1.000

y2 1.257 0.185 6.775 0.000

y3 1.058 0.148 7.131 0.000

y4 1.265 0.151 8.391 0.000

dem65 =~

y5 1.000

y6 1.186 0.171 6.920 0.000

y7 1.280 0.160 7.978 0.000

y8 1.266 0.163 7.756 0.000

##

Regressions:

Estimate Std.Err z-value P(>|z|)

dem60 ~

ind60 (a1) 1.483 0.397 3.733 0.000

dem65 ~

ind60 (b1) 0.572 0.234 2.449 0.014

dem60 (b2) 0.837 0.099 8.476 0.000

##

Covariances:

Estimate Std.Err z-value P(>|z|)

.y1 ~~

.y5 0.624 0.369 1.690 0.091

98

.y2 ~~

.y4 1.313 0.699 1.879 0.060

.y6 2.153 0.726 2.964 0.003

.y3 ~~

.y7 0.795 0.621 1.280 0.201

.y4 ~~

.y8 0.348 0.458 0.761 0.447

.y6 ~~

.y8 1.356 0.572 2.371 0.018

##

Intercepts:

Estimate Std.Err z-value P(>|z|)

.x1 5.054 0.084 60.127 0.000

.x2 4.792 0.173 27.657 0.000

.x3 3.558 0.161 22.066 0.000

.y1 5.465 0.302 18.104 0.000

.y2 4.256 0.450 9.461 0.000

.y3 6.563 0.376 17.460 0.000

.y4 4.453 0.384 11.598 0.000

.y5 5.136 0.301 17.092 0.000

.y6 2.978 0.386 7.717 0.000

.y7 6.196 0.377 16.427 0.000

.y8 4.043 0.371 10.889 0.000

ind60 0.000

.dem60 0.000

.dem65 0.000

##

Variances:

Estimate Std.Err z-value P(>|z|)

.x1 0.082 0.020 4.136 0.000

.x2 0.120 0.070 1.712 0.087

.x3 0.467 0.089 5.233 0.000

.y1 1.891 0.469 4.035 0.000

.y2 7.373 1.346 5.479 0.000

.y3 5.067 0.968 5.233 0.000

.y4 3.148 0.756 4.165 0.000

.y5 2.351 0.489 4.810 0.000

.y6 4.954 0.895 5.532 0.000

.y7 3.431 0.728 4.715 0.000

.y8 3.254 0.707 4.603 0.000

ind60 0.448 0.087 5.170 0.000

.dem60 3.956 0.945 4.188 0.000

.dem65 0.172 0.220 0.783 0.434

You could plot out the path diagram with the lavaanPlot() function in the package
of the same name:

99

library(lavaanPlot)

lavaanPlot(model=fit)

You can also use Lavaan to do mediation analysis. As you can see in the above plot,
the ind60 variable has an indirect effect through dem60 plus a direct effect on dem65. By
adding a couple of lines to our model, we can calculate the indirect and total effects.

library(lavaan)

med.model <- '

measurement model

ind60 =~ x1 + x2 + x3

dem60 =~ y1 + y2 + y3 + y4

dem65 =~ y5 + y6 + y7 + y8

regressions

dem60 ~ a1*ind60

dem65 ~ b1*ind60 + b2*dem60

residual correlations

y1 ~~ y5

y2 ~~ y4 + y6

y3 ~~ y7

y4 ~~ y8

y6 ~~ y8

Indirect Effect of ind60

ab := a1*b2

Total Effect of ind60

total := (a1*b2) + b1

'

fit2 <- sem(med.model, data=PoliticalDemocracy, mimic="MPlus")

summary(fit2)

lavaan 0.6-3 ended normally after 83 iterations

##

Optimization method NLMINB

Number of free parameters 42

100

##

Number of observations 75

Number of missing patterns 1

##

Estimator ML

Model Fit Test Statistic 38.125

Degrees of freedom 35

P-value (Chi-square) 0.329

##

Parameter Estimates:

##

Information Observed

Observed information based on Hessian

Standard Errors Standard

##

Latent Variables:

Estimate Std.Err z-value P(>|z|)

ind60 =~

x1 1.000

x2 2.180 0.139 15.685 0.000

x3 1.819 0.152 11.949 0.000

dem60 =~

y1 1.000

y2 1.257 0.185 6.775 0.000

y3 1.058 0.148 7.131 0.000

y4 1.265 0.151 8.391 0.000

dem65 =~

y5 1.000

y6 1.186 0.171 6.920 0.000

y7 1.280 0.160 7.978 0.000

y8 1.266 0.163 7.756 0.000

##

Regressions:

Estimate Std.Err z-value P(>|z|)

dem60 ~

ind60 (a1) 1.483 0.397 3.733 0.000

dem65 ~

ind60 (b1) 0.572 0.234 2.449 0.014

dem60 (b2) 0.837 0.099 8.476 0.000

##

Covariances:

Estimate Std.Err z-value P(>|z|)

.y1 ~~

.y5 0.624 0.369 1.690 0.091

.y2 ~~

101

.y4 1.313 0.699 1.879 0.060

.y6 2.153 0.726 2.964 0.003

.y3 ~~

.y7 0.795 0.621 1.280 0.201

.y4 ~~

.y8 0.348 0.458 0.761 0.447

.y6 ~~

.y8 1.356 0.572 2.371 0.018

##

Intercepts:

Estimate Std.Err z-value P(>|z|)

.x1 5.054 0.084 60.127 0.000

.x2 4.792 0.173 27.657 0.000

.x3 3.558 0.161 22.066 0.000

.y1 5.465 0.302 18.104 0.000

.y2 4.256 0.450 9.461 0.000

.y3 6.563 0.376 17.460 0.000

.y4 4.453 0.384 11.598 0.000

.y5 5.136 0.301 17.092 0.000

.y6 2.978 0.386 7.717 0.000

.y7 6.196 0.377 16.427 0.000

.y8 4.043 0.371 10.889 0.000

ind60 0.000

.dem60 0.000

.dem65 0.000

##

Variances:

Estimate Std.Err z-value P(>|z|)

.x1 0.082 0.020 4.136 0.000

.x2 0.120 0.070 1.712 0.087

.x3 0.467 0.089 5.233 0.000

.y1 1.891 0.469 4.035 0.000

.y2 7.373 1.346 5.479 0.000

.y3 5.067 0.968 5.233 0.000

.y4 3.148 0.756 4.165 0.000

.y5 2.351 0.489 4.810 0.000

.y6 4.954 0.895 5.532 0.000

.y7 3.431 0.728 4.715 0.000

.y8 3.254 0.707 4.603 0.000

ind60 0.448 0.087 5.170 0.000

.dem60 3.956 0.945 4.188 0.000

.dem65 0.172 0.220 0.783 0.434

##

Defined Parameters:

Estimate Std.Err z-value P(>|z|)

102

ab 1.242 0.357 3.480 0.001

total 1.814 0.381 4.756 0.000

You can get a bunch of fit measures with the fitMeasures function

fitMeasures(fit)

npar fmin chisq

42.000 0.254 38.125

df pvalue baseline.chisq

35.000 0.329 730.654

baseline.df baseline.pvalue cfi

55.000 0.000 0.995

tli nnfi rfi

0.993 0.993 0.918

nfi pnfi ifi

0.948 0.603 0.996

rni logl unrestricted.logl

0.995 -1547.791 -1528.728

aic bic ntotal

3179.582 3276.916 75.000

bic2 rmsea rmsea.ci.lower

3144.543 0.035 0.000

rmsea.ci.upper rmsea.pvalue rmr

0.092 0.611 0.256

rmr_nomean srmr srmr_bentler

0.276 0.041 0.041

srmr_bentler_nomean crmr crmr_nomean

0.044 0.045 0.049

srmr_mplus srmr_mplus_nomean cn_05

0.041 0.045 98.970

cn_01 gfi agfi

113.803 0.996 0.991

pgfi mfi ecvi

0.453 0.979 1.628

There are also commands that will produce modification indices (modificationindices()).

4 Miscellaneous Statistical Stuff

There are a few other statistical matters that are often part of your statistical analysis
workflow that we haven’t touched on yet. The first is robust/clustered standard errors.

4.1 Heteroskedasticity Robust Standard Errors

Did you know that there are 7 kinds of heteroskedasticity consistent standard errors?
They go by the names HC0, HC1, HC2, HC3, HC4, HC4m and HC5. They are all riffs

103

on the same basic idea - that we can use the residual (and sometimes the hat-value as a
measure of leverage) to give the appropriate weight to different values in calculating the
coefficient variances. In Political Science, we have often been apprised of at least HC0
and HC1 standard errors. In the social sciences more generally, robust standard errors
through HC3 have been discussed. The more recent incarnations often go unexamined.
All of these are available in the sandwich package. There is a useful function called
coeftest that is in the lmtest package that will summarize the coefficients using robust
variance-covariance matrices.

Using the strike volume models from above, we could look at the robust summaries.

library(stargazer)

library(sandwich)

library(lmtest)

mod1 <- lm(log(strike_vol + 1) ~ inflation +

unemployment + sdlab_rep, data=strikes)

coeftest(mod1, .vcov=vcovHC, type="HC3")

##

t test of coefficients:

##

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.4183539 0.3890087 6.2167 1.453e-09 ***

inflation 0.1463045 0.0226996 6.4452 3.851e-10 ***

unemployment 0.2104343 0.0311168 6.7627 5.738e-11 ***

sdlab_rep 0.0014674 0.0076656 0.1914 0.8483

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.2 Clustered Standard Errors

The multiwayvcov package has a function that allows clustering corrections to standard
errors. The function is cluster.vcov and allows potentially multiple clustering variables.
The strikes data are time-series cross-sectional in nature and so we might want to cluster
standard errors on country. We could accomplish that as follows:

library(multiwayvcov)

mod1 <- lm(log(strike_vol + 1) ~ inflation +

unemployment + sdlab_rep, data=strikes)

coeftest(mod1, cluster.vcov, cluster=strikes$ccode)

##

t test of coefficients:

##

104

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.4183539 1.2235211 1.9766 0.0488814 *

inflation 0.1463045 0.0384244 3.8076 0.0001658 ***

unemployment 0.2104343 0.0749549 2.8075 0.0052745 **

sdlab_rep 0.0014674 0.0229305 0.0640 0.9490113

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again, generating publication quality tables with these values would work the same
way as above. You would just replace the vcovHC function with cluster.vcov(mod1, strikes$ccode).

To cluster on two variables, you simply need to give a matrix (or data frame) rather
than a vector to the cluster argument.

coeftest(mod1, cluster.vcov, cluster=strikes[,c("ccode", "year")])

##

t test of coefficients:

##

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.4183539 1.2252916 1.9737 0.0492069 *

inflation 0.1463045 0.0435762 3.3574 0.0008737 ***

unemployment 0.2104343 0.0755991 2.7836 0.0056703 **

sdlab_rep 0.0014674 0.0224213 0.0654 0.9478550

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In either event, generating the right values is relatively easy. For those interested in
more complicated TSCS designs, the plm package has a number of methods for estimating
different TSCS models.

4.3 Weighting

Simple weighting in R is relatively easy as most modeling functions have a weight argu-
ment. We can use the 2012 GSS as an example:

gss <- import("GSS2012.dta")

umod <- lm(realinc ~ educ*age + sex, data=gss)

wmod <- lm(realinc ~ educ*age + sex, data=gss, weight=gss$wtss)

stargazer(umod, wmod, type="text")

##

==

Dependent variable:

realinc

105

(1) (2)

--

educ 5,619.782*** 5,153.598***

(935.915) (1,044.475)

##

age 77.571 -50.975

(241.850) (280.399)

##

sex -5,413.636*** -8,136.969***

(1,775.422) (1,947.624)

##

educ:age -6.525 6.448

(17.873) (20.666)

##

Constant -33,124.420** -19,661.850

(13,016.430) (14,514.430)

##

--

Observations 1,711 1,711

R2 0.162 0.151

Adjusted R2 0.160 0.149

Residual Std. Error (df = 1706) 36,560.000 39,793.750

F Statistic (df = 4; 1706) 82.711*** 75.565***

==

Note: *p<0.1; **p<0.05; ***p<0.01

The weights here produce the same result as analytical weights [aw=wtss] in Stata. The
equivalence between what’s going on in Stata and R does get a bit more complicated. If
you have a more compicated sampling scheme (e.g., cluster or stratified random sample),
then the survey package gives similar functionality to the svyset functions in Stata
(though is perhaps a bit less comprehensive). Here’s a quick example with the GSS data
from above just using a single weight variable with no clusters.

library(survey)

gss$voteob <- car::recode(gss$pres08, "1=1; 2:4=0; else=NA")

d <- svydesign(id=~1,strata=NULL, weights=~wtss, data=gss)

smod <- svyglm(voteob ~ realinc + age + sex, design=d, family=binomial)

summary(smod)

##

Call:

svyglm(formula = voteob ~ realinc + age + sex, design = d, family = binomial)

##

Survey design:

svydesign(id = ~1, strata = NULL, weights = ~wtss, data = gss)

##

106

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.785e-01 3.245e-01 2.708 0.006883 **

realinc -6.172e-06 1.726e-06 -3.577 0.000363 ***

age -4.922e-03 4.259e-03 -1.156 0.248110

sex 3.192e-02 1.432e-01 0.223 0.823674

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for binomial family taken to be 0.9482928)

##

Number of Fisher Scoring iterations: 4

summary(wmod)

##

Call:

lm(formula = realinc ~ educ * age + sex, data = gss, weights = gss$wtss)

##

Weighted Residuals:

Min 1Q Median 3Q Max

-113034 -21948 -12339 1102 321601

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -19661.849 14514.433 -1.355 0.176

educ 5153.598 1044.475 4.934 8.83e-07 ***

age -50.975 280.399 -0.182 0.856

sex -8136.969 1947.624 -4.178 3.09e-05 ***

educ:age 6.448 20.666 0.312 0.755

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 39790 on 1706 degrees of freedom

(205 observations deleted due to missingness)

Multiple R-squared: 0.1505,Adjusted R-squared: 0.1485

F-statistic: 75.56 on 4 and 1706 DF, p-value: < 2.2e-16

You’ll notice here that the the standard errors are different. Using the survey package
gives you a result that is equivalent to using [pw=wtss] in Stata. So, you should be able
to produce results like thos you want with one or the other method in R.

If you did a weighted cross-tab with the xtabs function, what you would find is that
these results correspond to the ones you would generate if you used importance weights,
[iw=wtss].

107

xtabs(wtss ~ pres08 + sex, data=gss)

sex

pres08 1 2

1 306.064833 394.434634

2 199.887618 246.103177

3 18.474857 6.590370

4 3.857657 3.757275

The weights package has a number of simple inferential functions (correlations, t-test,
χ2) for weighted data. Here are a few examples:

library(weights)

library(dplyr)

xf <- filter(gss, sex == 2)

yf <- filter(gss, sex == 1)

x <- xf$realinc

wtx <- xf$wtss

y <- yf$realinc

wty <- yf$wtss

wtd.t.test(x, y, wtx, wty)

$test

[1] "Two Sample Weighted T-Test (Welch)"

##

$coefficients

t.value df p.value

-3.763769e+00 1.508738e+03 1.737870e-04

##

$additional

Difference Mean.x Mean.y Std. Err

-8100.843 36120.827 44221.669 2152.322

Here’s another example:

wtd.cor(log(gss$age), log(gss$realinc), gss$wtss)

correlation std.err t.value p.value

Y 0.1005515 0.02406702 4.177978 3.089603e-05

and a χ2 example:

wtd.chi.sq(gss$pres08, gss$sex)

Chisq df p.value

5.0215284 3.0000000 0.1702275

There are also lots of functions available in the survey package for doing bivariate
and multiple relationships with weighted data.

108

5 Finding Packages on CRAN

R’s open source nature means that active development on new and improved R functions
is going on all over the world. This means that new functions are being written all
of the time and a comprehensive list of R’s capabilities would be ephemeral at best.
There are currently 5662 packages available from CRAN (and others available from other
repositories) each consisting of many functions. While this has many benefits for both
individual work and science more generally, it does making finding functions a bit more
difficult. There are many resources available, though.

RSeek (rseek.org) is a website that searches R’s help files (including those of the add
on packages), Support forums, books, blogs and google (all under separate headings)
to find what you’re looking for.

Crantastic crantastic.org is a website that organizes R packages by tags and permits
user reviews. The search facilities here seem a bit less powerful than RSeek.

?? The ?? character (or the function help.search()) will search local help files for for
a particular word.

Packages from CRAN can be installed with install.packages('package name').6

Generally, packages are built as binary files, meaning they have already been compiled
and they are ready to install directly. Binaries for Windows cannot be installed on Macs
and vice versa. Packages are also distributed as source code that can be compiled directly
on your machine. There is often little need for this unless packages are available in an
older version, but not for your current version. You could build the package directly
yourself.

• If when you try to install a package from CRAN, it tells you that it doesn’t exist for
your version, try the following: install.packages('package name', type='source').
This will download the source package and try to compile it on your machine.

When you try to install a package from CRAN, you will have to choose a CRAN mirror
(i.e., a website from which to download the package). The advice is generally to use one
that is geographically close, but there is also a cloud-based option which is the first on
the list. This is as good as any to use.

Development happens in other places than on CRAN. Technically, the people who
maintain CRAN only want developers to upload new versions a few times a year. De-
velopment happens in other places like R-forge and github. One place to search for new
or development versions of packages is on R-forge (r-forge.r-project.org). To install
packages from R-forge, you could do:
install.packages('package name', repos='r-forge.r-project.org).

Git is a popular source code management (SCM) system and many using Git have
projects on Github, a web-based hosting service for that uses Git for version control.
Packages can be installed from github using the devtools package.

6Singe and double quotes are both acceptable in R as quotation characters, but not mixed up. That
is, if you open with a double quote, you also have to close with a double quote.

109

rseek.org
crantastic.org
r-forge.r-project.org

library(devtools)

install_github('davidaarmstrong/damisc')

Once packages have been installed, (with some version of install.packages or
install_github), they need to be loaded so you can have the required functionality
with library('package name'). The install.packages or equivalent function only
needs to be run once for each version of R. Once you’ve downloaded and installed the
package, it doesn’t need to be installed again. However, the library('package name')

statement has to be issued in each session (i.e., each time you turn R on).

There are ways to have R automatically load packages every time you open the soft-
ware. To do this, follow these steps.

1. Open a file in whichever R editor you are using (R’s internal or RStudio).

2. Save the file as .Rprofile in your home directory (i.e., R’s default working direc-
tory).

3. In that file, put the following:

dp <- getOption("defaultPackages")

options(defaultPackages=c(dp, "foreign", "MASS", "DAMisc"))

and then save the file.

Now, the next time you open R the packages you specified will be automatically
loaded.

6 Warnings and Errors

Most of the time, if R provides no output than it means you did something right. R will
generally offer two kinds of “you did something wrong” messages.

• Warnings - these messages suggest that things may not have proceeded exactly as
expected, but output was still produced. Unless you are familiar with the warning
and the circumstances under which it is produced, you should look at the results
to ensure they make sense.

mat <- matrix(c(

100, 25, 3, 11), ncol=2, byrow=T)

chisq.test(mat)

Pearson's Chi-squared test with Yates' continuity correction

110

data: mat

X-squared = 19.5568, df = 1, p-value = 9.765e-06

Warning message:

In chisq.test(mat) : Chi-squared approximation may be incorrect

Note, the warning suggests the χ2 approximation may be incorrect (it doesn’t say
why, but it is because there are expected counts of less than five). The output was
produced, but R is cautioning you to ensure that you take a second look at your
results to make sure they are what you want.

• Errors - these are messages that indicate R was unable to perform the task you
asked. Generally, no output beyond the error message is produced. Some error
messages can be helpful and others, not so much. It depends on how the func-
tion was programmed (developers write their own warning/error messages). For
example, what if I try to correlate a numeric vector with a vector of words:

x <- c(1,2,3,4,5)

y <- c("a", "b", "c", "d", "e")

cor(x,y)

> cor(x,y)

Error in cor(x, y) : 'y' must be numeric

Note here that R is telling you that y has to be numeric and until you make it
numeric, R can’t produce any output for the function.

7 Troubleshooting

In the example above with chisq.test, you may wonder why it gives you that error.
You could look in the help file, but that might not provide the relevant information (in
this case, it does not). You could then look at the code. If you type chisq.test at the
command prompt (without the parenthesesS) and hit enter, R will provide you with the
source code. You could then search for your warning and you would find the following.

names(PARAMETER) <- "df"

if (any(E < 5) && is.finite(PARAMETER))

warning("Chi-squared approximation may be incorrect")

The term PARAMETER is the degrees of freedom and E is the expected count. We know
this either by looking through the code or just from the context. So, the warning message
is produced in the case where any expected values are less than five and the degrees of
freedom is finite. Presumably, we have a sense of what the theoretical problems are and
could remedy them. By using a (Monte Carlo) simulated p-value, the warning disap-
pears. The reason it goes away is that when you simulate the p-value, the function sets
PARAMETER to NA (missing), so it fails the is.finite(PARAMETER) part of the condition
to trigger the warning.

111

chisq.test(mat, simulate.p.value=TRUE)

##

Pearson's Chi-squared test with simulated p-value (based on 2000

replicates)

##

data: mat

X-squared = 22.505, df = NA, p-value = 0.0004998

Ultimately, the code is the definitive source for what the function is doing and when.
Unfortunately, for many of us, myself included at times, the code is not always that
illuminating. Sometimes, typing the function at the command line and hitting enter will
not provide you with all of the code. For example,

mean

standardGeneric for "mean" defined from package "base"

##

function (x, ...)

standardGeneric("mean")

<environment: 0x7ffc605aaf28>

Methods may be defined for arguments: x

Use showMethods("mean") for currently available ones.

Here, the “guts” of the function are UseMethod(mean). This suggests that mean is a
generic function and works differently on different objects. If you want to see what kinds
of objects the mean function works on, you could do:

methods("mean")

[1] mean,ANY-method mean,Matrix-method

[3] mean,Raster-method mean,sparseMatrix-method

[5] mean,sparseVector-method mean.Date

[7] mean.default mean.difftime

[9] mean.IDate* mean.mlogit*

[11] mean.mlogit.data* mean.POSIXct

[13] mean.POSIXlt mean.quosure*

[15] mean.rpar* mean.yearmon*

[17] mean.yearqtr* mean.zoo*

see '?methods' for accessing help and source code

Since we generally want the mean of an object of class numeric, we would look for
mean.numeric. Since it’s not there, we would look at mean.default.

112

mean.default

function (x, trim = 0, na.rm = FALSE, ...)

{

if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {

warning("argument is not numeric or logical: returning NA")

return(NA_real_)

}

if (na.rm)

x <- x[!is.na(x)]

if (!is.numeric(trim) || length(trim) != 1L)

stop("'trim' must be numeric of length one")

n <- length(x)

if (trim > 0 && n) {

if (is.complex(x))

stop("trimmed means are not defined for complex data")

if (anyNA(x))

return(NA_real_)

if (trim >= 0.5)

return(stats::median(x, na.rm = FALSE))

lo <- floor(n * trim) + 1

hi <- n + 1 - lo

x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]

}

.Internal(mean(x))

}

<bytecode: 0x7ffc47dba018>

<environment: namespace:base>

It is also possible that some code you want to see is “hidden”. The reasons for this are
technical and not that interesting, so we won’t go into them. Let’s imagine you loaded the
car package with library(car) and wanted to see if there was any method for plotting
a data frame (e.g., Duncan).

methods("plot")

[1] plot,ANY,ANY-method

[2] plot,ANY,brob-method

[3] plot,ANY,glub-method

[4] plot,brob,ANY-method

[5] plot,brob,missing-method

[6] plot,color,ANY-method

[7] plot,Extent,missing-method

[8] plot,glub,ANY-method

[9] plot,glub,missing-method

[10] plot,parboot,missing-method

113

[11] plot,profile,missing-method

[12] plot,profile.mle,missing-method

[13] plot,pvgam,ANY-method

[14] plot,qrrvglm,ANY-method

[15] plot,Raster,ANY-method

[16] plot,Raster,Raster-method

[17] plot,rcim,ANY-method

[18] plot,rcim0,ANY-method

[19] plot,rrvgam,ANY-method

[20] plot,Spatial,missing-method

[21] plot,SpatialGrid,missing-method

[22] plot,SpatialGridDataFrame,missing-method

[23] plot,SpatialLines,missing-method

[24] plot,SpatialMultiPoints,missing-method

[25] plot,SpatialPixels,missing-method

[26] plot,SpatialPixelsDataFrame,missing-method

[27] plot,SpatialPoints,missing-method

[28] plot,SpatialPolygons,missing-method

[29] plot,stanfit,missing-method

[30] plot,timeDate,ANY-method

[31] plot,timeSeries,ANY-method

[32] plot,unmarkedFit,missing-method

[33] plot,unmarkedFitOccuMulti,missing-method

[34] plot,unmarkedFrame,missing-method

[35] plot,unmarkedFrameOccuMulti,missing-method

[36] plot,unmarkedRanef,missing-method

[37] plot,vgam,ANY-method

[38] plot,vglm,ANY-method

[39] plot,vlm,ANY-method

[40] plot,vsmooth.spline,ANY-method

[41] plot.aareg*

[42] plot.acf*

[43] plot.ACF*

[44] plot.agnes*

[45] plot.areg*

[46] plot.areg.boot*

[47] plot.aregImpute*

[48] plot.augPred*

[49] plot.bagplot

[50] plot.balsos*

[51] plot.bayesplot_grid*

[52] plot.bayesplot_scheme*

[53] plot.bclust*

[54] plot.biVar*

[55] plot.boot*

114

[56] plot.brmsfit*

[57] plot.brmshypothesis*

[58] plot.brmsMarginalEffects*

[59] plot.cld*

[60] plot.clusGap*

[61] plot.coef.mer*

[62] plot.cohesiveBlocks*

[63] plot.communities*

[64] plot.compareFits*

[65] plot.Conf

[66] plot.confint.glht*

[67] plot.correspondence*

[68] plot.cox.zph*

[69] plot.cuminc*

[70] plot.curveRep*

[71] plot.data.frame*

[72] plot.decomposed.ts*

[73] plot.default

[74] plot.dendrogram*

[75] plot.density*

[76] plot.Desc*

[77] plot.describe*

[78] plot.diana*

[79] plot.diffci*

[80] plot.drawPlot*

[81] plot.ecdf

[82] plot.eff*

[83] plot.efflist*

[84] plot.effpoly*

[85] plot.factor*

[86] plot.factorplot*

[87] plot.fANCOVA*

[88] plot.formula*

[89] plot.function

[90] plot.gam*

[91] plot.gbayes*

[92] plot.ggplot*

[93] plot.glht*

[94] plot.gls*

[95] plot.goodfit*

[96] plot.gtable*

[97] plot.hcl_palettes*

[98] plot.hclust*

[99] plot.histogram*

[100] plot.HoltWinters*

115

[101] plot.ica*

[102] plot.ideal*

[103] plot.igraph*

[104] plot.InformativeTesting*

[105] plot.intervals.lmList*

[106] plot.irt

[107] plot.isoreg*

[108] plot.jam*

[109] plot.Lc

[110] plot.Lclist

[111] plot.lda*

[112] plot.limdil*

[113] plot.lm*

[114] plot.lme*

[115] plot.lmList*

[116] plot.lmList4*

[117] plot.lmList4.confint*

[118] plot.loddsratio*

[119] plot.loess

[120] plot.loglm*

[121] plot.loo*

[122] plot.ls_means*

[123] plot.mca*

[124] plot.mcmc*

[125] plot.mcmc.list*

[126] plot.medpolish*

[127] plot.merMod*

[128] plot.mids*

[129] plot.mitml*

[130] plot.mlm*

[131] plot.mlm.efflist*

[132] plot.mlogit*

[133] plot.mona*

[134] plot.MPP*

[135] plot.nffGroupedData*

[136] plot.nfnGroupedData*

[137] plot.nls*

[138] plot.nmGroupedData*

[139] plot.OddsRatio*

[140] plot.opscale*

[141] plot.palette

[142] plot.partition*

[143] plot.pdMat*

[144] plot.poly

[145] plot.poly.parallel

116

[146] plot.PostHocTest

[147] plot.PP*

[148] plot.ppr*

[149] plot.prcomp*

[150] plot.predict.crr*

[151] plot.predict.ideal*

[152] plot.predictoreff*

[153] plot.predictorefflist*

[154] plot.predProbs*

[155] plot.preplot.predProbs*

[156] plot.princomp*

[157] plot.profile*

[158] plot.profile.clm*

[159] plot.profile.clm2*

[160] plot.profile.clmm2*

[161] plot.profile.game*

[162] plot.profile.nls*

[163] plot.psis*

[164] plot.psis_loo*

[165] plot.psych

[166] plot.Quantile2*

[167] plot.R6*

[168] plot.ranef.lme*

[169] plot.ranef.lmList*

[170] plot.ranef.mer*

[171] plot.raster*

[172] plot.replot_xts*

[173] plot.residuals

[174] plot.ridgelm*

[175] plot.rm.boot*

[176] plot.rpar*

[177] plot.rpart*

[178] plot.rrvgam*

[179] plot.seatsVotes*

[180] plot.sePP*

[181] plot.shingle*

[182] plot.silhouette*

[183] plot.simulate.lme*

[184] plot.sir*

[185] plot.slice.clm*

[186] plot.SOM*

[187] plot.somgrid*

[188] plot.spec*

[189] plot.spline*

[190] plot.step_list*

117

[191] plot.stepfun

[192] plot.stft*

[193] plot.stl*

[194] plot.structable*

[195] plot.summary.formula.response*

[196] plot.summary.formula.reverse*

[197] plot.summaryM*

[198] plot.summaryP*

[199] plot.summaryS*

[200] plot.Surv*

[201] plot.surv_cutpoint*

[202] plot.survfit*

[203] plot.svm*

[204] plot.svrepstat*

[205] plot.svyby*

[206] plot.svycdf*

[207] plot.svykm*

[208] plot.svykmlist*

[209] plot.svysmooth*

[210] plot.svystat*

[211] plot.table*

[212] plot.timeSeries*

[213] plot.TMod*

[214] plot.transcan*

[215] plot.trellis*

[216] plot.ts

[217] plot.tskernel*

[218] plot.TukeyHSD*

[219] plot.tune*

[220] plot.varclus*

[221] plot.Variogram*

[222] plot.vgam*

[223] plot.visreg*

[224] plot.visreg2d*

[225] plot.visregList*

[226] plot.xts*

[227] plot.xyVector*

[228] plot.zoo

see '?methods' for accessing help and source code

What you see is that there is a plot.data.frame, but it has an asterisk which indicates
that it is “Non-visible”. So, if you type plot.data.frame at the command line and hit
enter, R will tell you that it cannot find plot.data.frame. To see the code for invisible
functions, you could look at:

118

getAnywhere(plot.data.frame)

A single object matching 'plot.data.frame' was found

It was found in the following places

registered S3 method for plot from namespace graphics

namespace:graphics

with value

##

function (x, ...)

{

plot2 <- function(x, xlab = names(x)[1L], ylab = names(x)[2L],

...) plot(x[[1L]], x[[2L]], xlab = xlab, ylab = ylab,

...)

if (!is.data.frame(x))

stop("'plot.data.frame' applied to non data frame")

if (ncol(x) == 1) {

x1 <- x[[1L]]

if (class(x1)[1L] %in% c("integer", "numeric"))

stripchart(x1, ...)

else plot(x1, ...)

}

else if (ncol(x) == 2) {

plot2(x, ...)

}

else {

pairs(data.matrix(x), ...)

}

}

<bytecode: 0x7ffc3a39d520>

<environment: namespace:graphics>

8 Help!

There are lots of ways to get help for R. First, let me suggest a couple of books.

8.1 Books

• Kabacoff, Robert. 2014. R In Action, 2nd ed. Manning.

• Fox, John and Sanford Weisberg. 2011. An R Companion to Applied Regression,
2nd ed. Sage.

• Monogan, James. 2015. Political Analysis Using R. Springer (forthcoming this
Fall).

119

Both are wonderful books. Kabacoff’s is more of a “from scratch” book, providing some
detail about the basics that John’s book doesn’t. Kabacoff also has a website called
Quick R http://www.statmethods.net/ that has some nice examples and code that
could prove useful. John’s has some introductory material, but is a bit more focused on
regression than Kabacoff’s.

8.2 Web

There are also lots of internet resources.

Stack Overflow The r tag at stack overflow refers to questions relating to R (http:
//stackoverflow.com/questions/tagged/r). In the top-right corner of the page,
there is a search bar that will allow you to search through “r”-tagged questions.
So, here you can see if your question has already been asked and answered or post
a new question if it hasn’t.

Rseek We talked about http://www.rseek.org for finding packages, but it is also useful
for getting help if you need it.

RSiteSearch This can be invoked from wihin R as RSiteSearch('linear').

UCLA IDRE UCLA’s Institute for Digital Research and Education (http://www.ats.
ucla.edu/stat/r/) has some nice tools for learning R, too.

R Mailing List R has a number of targeted mailing lists (along with a general help
list) that are intended to allow users to ask questions (http://www.r-project.
org/mail.html). There are links to instructions and a posting guide which you
should follow to the best of your ability. Failure to follow these guidelines will
likely result in you being excoriated by the people on the list. People who answer
the questions are doing so on their free time, so make it as easy as possible for them
to do that. In general, it is good practice if you’re asking someone to help you that
you provide them with the means to reproduce the problem.

9 Brief Primer on Good Graphics

While we could define graphs in lots of different ways, Kosslyn (1994, 2) defines graphs
as:

“a visual display that illustrates one or more relationships among numbers”

He goes on to define a graph as “successful” if:

“the pattern,trend or comparison it presents can be immediately apprehended.”

Graphs work by encoding quantitative and qualitative information with different
graphical elements - points (plotting symbols), lines (patterns), colors, etc...

• Graphical perception is the visual decoding of this encoded information

120

http://www.statmethods.net/
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
http://www.rseek.org
http://www.ats.ucla.edu/stat/r/
http://www.ats.ucla.edu/stat/r/
http://www.r-project.org/mail.html
http://www.r-project.org/mail.html

• For our graphs to be successful, readers must be able to easily and efficiently decoded
the quantitative and qualitative information.

Shah (2002) identifies three components to the process of visual decoding

1. Identify important features of the display (what Cleveland calls “Detection”) →
Characteristics of the display

2. Relate the visual feature to the phenomenon it represents in the observed world →
Knowledge of graphs

3. Interpret the relationships interps of concepts being quantified → Knowledge of
content (i.e., concepts being discussed).

9.1 Graphical Perception

We can use lots of different elements to encode numeric information

• Angle

• Area

• Color hue

• Color saturation

• Density

• Length (distance)

• Position along a common scale

• Position along identical, non-aligned
scales

• Slope

• Volume
Others

• Volume is used rarely to encode quantitative information in scientific graphs.

• Color hue (i.e., different colors) are often used to encode categorical (not quan-
titative) information. Cleveland does not discuss this much (book published in
1985).

• Color saturation (i.e., the intensity of the color) can be used to encode quantitative
information.

– Be careful about making graphs color-blind friendly

– Realize that many graphs will may appear in color on the screen, but may not
be printed in color

– See http://colorbrewer2.org for more advice

Further, our visual processing system is drawn to make comparisons within rather
than between groups

• When observations are clustered together, our minds tend to think they belong to
the same group.

121

http://colorbrewer2.org

• Groups should be formed such that the intended comparisons are within, rather
than between groups.

Cleveland identified a set of elementary perception tasks and the ordering (below from
easiest to hardest) of their difficulty.

1. Position along a common scale

2. Position along identical, nonaligned scale

3. Length

4. Angle - Slope

5. Area

6. Volume

7. Color hue, color saturation, density

9.2 Advice

Plotting Symbols:

• Use open plotting symbols (rather than filled in)

Legends:

• Legends should be comprehensive and informative - should make the graph stand
alone.

• Legends should:

– Describe everything that is graphed

– Draw attention to important aspects

– Describe conclusions.

Readers should not be left “guessing” about what the graphical elements mean.

Error Bars:

Error bars (or regions) should be clearly labeled so as to convey their meaning. Com-
mon error bars are:

• ± 1 SD.

• ± 1 SE

• 95% Confidence Interval.

122

Axes (scales):

• Choose tick marks to include all (or nearly all) of the range of the data

• Choose scales so that the data fill up as much of the data region as possible

• Sometimes two different scales can be more informative

• Axes should be labeled (including units where applicable).

• Use appropriate (i.e., the same) scales when comparing.

• Do not feel obliged to force scale lines to include zero.

• Use data transformations (e.g., logs) to improve resolution.

Aspect Ratio:

Cleveland found through experimentation, that 45
◦

was the angle at which we can
best discern differences in slope. Thus, he developed a technique called “banking to 45

◦
”

that finds the optimal aspect ratio for graphs.

• If you’re using lattice, then using the option aspect= 'xy' will do the banking
for you.

• If you’re using some different graphing tool (like R’s traditional graphics engine),
then setting the aspect ratio to one will come close enough, usually.

10 Graphics Philosophies

R has four different graphics systems - base, grid, lattice and ggplot2, all with different
philosophies about how graphs are to be made.

base The base system works like painting - you can sequentially add elements to a graph,
but it is quite hard to take elements away (in fact, it is impossible). Layers can be
added until the graph conveys just what the user wants.

lattice The lattice system is based on Cleveland’s Trellis system developed at Bell Labs
and is built on top of the grid graphics system. These are particularly good for
grouped data where multi-panel displays are needed/desired. These operate more
like setting up a track of dominoes when you were a kid. You line them all up and
then knock the first one down and all the others fall as you’ve arranged them. If
you messed up the arrangement, it isn’t going to be as cool/pretty/interesting as
you thought. Lattice graphs work the same way. All elements of the graph must
be specified in a single call to the graphics command and if you don’t do it right,
it will not be as cool/pretty/interesting as you want.

123

ggplot2 Hadley Wickham wrote ggplot2 and describes it in his 2009 book as an imple-
mentation of Leeland Wilkinson’s “Grammar of graphics”. This builds a compre-
hensive grammar- (read model-) based system for generating graphs.

grid The grid system was written by Paul Murrell and is described in his 2006 book,
which is now in its second edition. This system, while very flexible, is not something
that users often interact with. We are much better off interacting with grid through
lattice.

The base graphics system, lattice and grid are all downloaded automatically when you
download R. ggplot2 must be downloaded separately and all but the base system must
be loaded when you want to use them with the library() command.

As you can imagine, these different systems offer quite different solutions to creating
high quality graphics. Depending on what exactly you’re trying to do, some things are
more difficult, or impossible, in one of these systems, but not in the other. We will
certainly see examples of this as the course progresses. I have had a change of heart
about these various systems recently. Originally, I did everything I possibly could in
the traditional graphics system and then only later moved to the lattice system. This
probably makes sense as the lattice system requires considerably more programming, but
does lots more neat stuff. More recently still, I have moved much of my plotting to ggplot
because I think that is where the discipline is headed, in general. If we have to focus on
one advanced graphics platform, ggplot is probably the best one to focus on.

We are going to start by talking about the traditional graphics system. We will spend
some time later talking about what other kinds of graphs can do and why we might want
to use them, but for now, it’s just the traditional graphics.

11 The Plot Function

For the most part, in the traditional graphics system, graphs are initially made with the
plot function, though there are others, too. Then additional elements can be added as
you see fit.

11.1 getting familiar with the function

Let’s take a look at the help file for the plot command.

x: the coordinates of points in the plot. Alternatively, a

single plotting structure, function or _any R object with a

'plot' method_ can be provided.

y: the y coordinates of points in the plot, _optional_ if 'x' is

an appropriate structure.

...: Arguments to be passed to methods, such as graphical

parameters (see 'par'). Many methods will accept the

following arguments:

124

'type' what type of plot should be drawn. Possible types are

* '"p"' for *p*oints,

* '"l"' for *l*ines,

* '"b"' for *b*oth,

* '"c"' for the lines part alone of '"b"',

* '"o"' for both ë*o*verplottedı́,

* '"h"' for ë*h*istogramı́ like (or ëhigh-densityı́)

vertical lines,

* '"s"' for stair *s*teps,

* '"S"' for other *s*teps, see ëDetailsı́ below,

* '"n"' for no plotting.

All other 'type's give a warning or an error; using, e.g.,

'type = "punkte"' being equivalent to 'type = "p"' for S

compatibility.

'main' an overall title for the plot: see 'title'.

'sub' a sub title for the plot: see 'title'.

'xlab' a title for the x axis: see 'title'.

'ylab' a title for the y axis: see 'title'.

'asp' the y/x aspect ratio, see 'plot.window'.

Now, we can load the Duncan data again and see how the plotting function works. The
two following commands produce the same output within the plotting region, but have
different axis labels.

library(car)

plot(prestige ~ income, data=Duncan)

plot(Duncan$income, Duncan$prestige)

There are a couple of interesting features here.

125

Figure 2: Scatterplot of Income and Prestige from the Duncan data

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

income

pr
es

tig
e

• You can either specify the plot with a formula as the first argument, y ~ x or
with x,y as the first two arguments. The data argument only exists when you
use the former method. Using the latter method, you have to provide the data in
dataset$variable format, unless the data are attached.

• Whatever names you have for x and y will be printed as the x- and y-labels. These
can be controlled with the xlab and ylab commands.

• The plotting symbols, by default are open circles. This can also be controlled with
the pch option (more on this later) .

11.2 Default Plotting Methods

In R, there are default methods for plotting all types of variables. By default method I
simply mean that R looks at the context in which you’re asking for a graph and then
makes what it thinks is a reasonable graph given the different types of data. All of the
figures in 3 were called simply by using the plot command. R figured out by the types
of variables being used what plot was most appropriate.

plot(Duncan$income)

plot(Duncan$type)

126

plot(income ~ education, data=Duncan)

Duncan$inc.cat <- cut(Duncan$income, 3)

par(las=2, mar=c(5,7,2,3))

plot(inc.cat ~ type, data=Duncan, xlab="", ylab="")

plot(income ~ type, data= Duncan, xlab="")

You try it

1. Load the R data file strikes_small.rda that was in
your zip file.

2. Look through the variables by using str and
searchVarLabels(strikes, '') (make sure the
DAMisc package is loaded to use searchVarLabels).
Using the data, make examples of all the plots above.

127

Figure 3: Default Plotting Methods

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

0 10 20 30 40

20
40

60
80

Index

D
un

ca
n$

in
co

m
e

(a) One Numeric - scatterplot (with
index as the x-axis)

prof bc wc

0
5

10
15

20

(b) One factor - histogram

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

20 40 60 80 100

20
40

60
80

education

in
co

m
e

(c) Two Numeric Variables - scatterplot

pr
of bc w
c

(6.93,31.7]

(31.7,56.3]

(56.3,81.1]

0.0

0.2

0.4

0.6

0.8

1.0

(d) Two Factors - mosaic plot

●

prof bc wc

20
40

60
80

in
co

m
e

(e) One Numeric, One Factor - boxplot

128

11.3 Controlling the Plotting Region

There are a number of commands we can use to control the size and features of the
plotting region.

• We can control the limits of the x- and y-axis with xlim and ylim, respectively.
Here, the limits are specified with a vector of indicating the desired minimum and
maximum value of the axis.

plot(prestige ~ income, data=Duncan, xlim=c(0,100))

11.4 Example of Building a Scatterplot

In R, you can open a plotting window and set its dimensions without actually making the
points appear in the space. You can do this by specifying type='n'. You can also remove
the axes from the space, by issuing the command axes=F. Finally, you could remove any
axis labels by adding the commands xlab='', ylab=''. The command, then, would
look something like this:

plot(prestige ~ income, data=Duncan, type="n", xlab='', ylab='', axes=F)

This will open a graphics window that is completely blank. One reason that you may
want to do this is to be able to control, more precisely, the elements of the graph. Let’s
talk about adding some elements back in.

We can add the points by using the points command. You can see the arguments to
the points command by typing help(points). The first two arguments to the command
are x and y. You can also change the plotting symbol and the color.

• Plotting Symbols are governed by the pch argument. Below is a description of some
common plotting symbols.

●
1 2 3 4 5 6 7 8 9

●
10 11 12

●
13 14 15

●
16 17 18

●
19

●

20

• Color - Colors are controlled by the col command. (see help for rainbow, colors).
The colors can be specified by col = 'black' or col = 'red'. Colors can also
be specified with rgb() for red-green-blue saturation with optional transparency
parameter.

129

• Lines - there are six different line-types which should be specified with the corre-
sponding number:

1 2 3 4 5 6

• Line-width, controlled with lwd defaults to 1, so numbers bigger than 1 are thicker
than the default and numbers smaller than 1 are thinner.

• Character Expansion is controlled by cex. This controls the size of the plotting
symbols. The default is 1. Numbers in the range (0,1) make plotting symbols
smaller than the default and values > 1 make the plotting symbols bigger than
they would be otherwise.

130

There are lots of interesting things we can do with these. Let’s start by changing the
plotting character and color of points.

plot(prestige ~ income, data=Duncan, pch=16, col="blue",

xlab='% males earnings > $3500/year',

ylab='% of NORC raters indicating profession as good or excellent',

main = 'Prestige versus Income\n (Duncan Data)')

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

131

Above, we simply plotted the points, so only two variables are involved here. What if
we wanted to include a third variable? We could include information relating to occupa-
tion type by coloring the points different for different types of occupations and perhaps
using different plotting symbols. To do this, we would have to specify the pch argument
differently, but could use the rest of the commands we specified above to make the plot.

plot(prestige ~ income, data=Duncan, pch=as.numeric(Duncan$type),

xlab='% males earnings > $3500/year',

ylab='% of NORC raters indicating profession as good or excellent',

main = 'Prestige versus Income\n (Duncan Data)')

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

132

Basically, what you are doing is you are specifying the plotting character for each point.
This is much easier in the more advanced systems, but we’ll get there eventually. We
could also do this with colors.

cols <- c("blue", "black", "red")

plot(prestige ~ income, data=Duncan, pch=as.numeric(Duncan$type),

col = cols[as.numeric(Duncan$type)],

xlab='% males earnings > $3500/year',

ylab='% of NORC raters indicating profession as good or excellent',

main = 'Prestige versus Income\n (Duncan Data)')

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

You’re doing this by allowing our vector of the three colors to be indexed by the
occupation type. Nifty, right!?

You try it

Using the strikes_small.rda object, do the following:
1. Plot the log of strike volume (+1) against one of the

quantitative variables in the dataset.

2. Make a factor variable out of sdlab_rep such that
there are three evenly-sized groups. Change the plot-
ting symbols in the graph above based on the values of
this variable.

3. Make the colors of the plotting symbols above a func-
tion of the factor you created in the last step.

133

You can also encode quantitative information in color with colorRampPalette.

myRamp <- colorRampPalette(c("gray75", "gray25"))

cols <- myRamp(length(unique(Duncan$education)))

pchs <- c(15,16,17)

plot(prestige ~ income, data=Duncan,

pch=pchs[as.numeric(Duncan$type)],

col = cols[order(Duncan$education)],

xlab='% males earnings > $3500/year',

ylab='% of NORC raters indicating profession as good or excellent',

main = 'Prestige versus Income\n (Duncan Data)')

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

Next, we can talk about adding elements to the plots.

11.4.1 Adding a Legend

We know what the points mean, but we can’t very well expect other people to know this
unless we tell them. There is a function called legend that allows us to make a legend
and stick it in the plot. The legend command has a number of arguments that should
be specified.

• The first argument is the location of the plot. This can be specified in a number of
ways. If you provide x and y coordinate values (with x=# and y=#), then this gives
the coordinates for the top-left corner of the box containing the legend informa-
tion. Otherwise, you can specify the location with topleft, top, topright, right,
bottomright, bottom, bottomleft, left and R will put the legend near the edge
of the plot in this position.

134

• The legend argument gives the text you want to be displayed for each point/line
you’re describing.

• The point symbol and color are given by a vector to pch and col.

• If instead of points, you have lines, you can give the argument lty with the different
line types being used (more on this later).

• inset gives the fraction of the plot region between the edges of the legend and the
box around the plotting region (default is 0).

We can include a legend in our plot as follows:

cols <- c("blue", "black", "red")

plot(prestige ~ income, data=Duncan, pch=as.numeric(Duncan$type),

col = cols[as.numeric(Duncan$type)],

xlab='% males earnings > $3500/year',

ylab='% of NORC raters indicating profession as good or excellent',

main = 'Prestige versus Income\n (Duncan Data)')

legend("bottomright", c("Blue-collar", "Professional", "White-collar"),

pch=1:3, col=cols, inset=.01)

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

● Blue−collar
Professional
White−collar

You try it

Using the strikes_small.rda object, do the following:
1. Add a legend to the plot you made in the previous

exercise

135

11.4.2 Adding a Regression Line

We can add a regression line to the previous graph with abline() which adds a line of
specified slope and intercept to the plot.

plot(prestige ~ income, data=Duncan, pch=as.numeric(Duncan$type),

col = cols[as.numeric(Duncan$type)],

xlab='% males earnings > $3500/year',

ylab='% of NORC raters indicating profession as good or excellent',

main = 'Prestige versus Income\n (Duncan Data)')

legend("bottomright", c("Blue-collar", "Professional", "White-collar"),

pch=1:3, col=cols, inset=.01)

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

● Blue−collar
Professional
White−collar

If we wanted to add a different regression line for each occupation type, we can do that
with three different calls to abline().

plot(prestige ~ income, data=Duncan, pch=as.numeric(Duncan$type),

col = cols[as.numeric(Duncan$type)],

xlab='% males earnings > $3500/year',

ylab='% of NORC raters indicating profession as good or excellent',

main = 'Prestige versus Income\n (Duncan Data)')

legend("bottomright", c("Blue-collar", "Professional", "White-collar"),

pch=1:3, col=cols, inset=.01)

abline(lm(prestige ~ income, data=Duncan,

subset=Duncan$type == "bc"), col=cols[1])

abline(lm(prestige ~ income, data=Duncan,

subset=Duncan$type == "prof"), col=cols[2])

abline(lm(prestige ~ income, data=Duncan,

136

subset=Duncan$type == "wc"), col=cols[3])

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

● Blue−collar
Professional
White−collar

11.4.3 Identifying Points in the Plot

Points in the plot can be identified with the function identify. The identify will print
a label next to points that you click on giving an indication of which point exactly is
plotted. The important arguments are:

• Location is given by an x and y variable. These should be the same x and y variables
you used to make the plot.

• The labels, given with the label option will provide R with text to print by each
identified point.

• n gives the number of points we want to identify.

Let’s try to identify the two most outlying points on our graph.

identify(x=Duncan$income, y=Duncan$prestige,

labels=rownames(Duncan), n=2)

You can see here that the minister has more prestige on average than other jobs with
similar percentage of males making over $3500 and that the conductor (railroad) has less
prestige than its income would suggest.

137

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

20 40 60 80

0
20

40
60

80
10

0

Prestige versus Income
 (Duncan Data)

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

● Blue−collar
Professional
White−collar

minister

conductor

You don’t have to set n to any number in particular, just remember to shut off the
identifying if you don’t set it. On a mac, just right-clicking in the plot will turn off the
identifying function. On Windows, you can right-click in the plot, then a dialog will pop
up asking if you want to stop or continue. Not surprisingly, if you want to stop identifying,
just click “stop”. There is another function called locator() which will simply return
the (x,y) coordinate of the point clicked in the plotting region.

You try it

Using the strikes_small.rda object, do the following:
1. Identify points in the previous plot you made by coun-

try and year. Note, you will have to make a variable
that is country and year with
paste(strikes$abb, strikes$year, sep=:”)”

11.5 Other Plots

There are a few other plots that are both common and useful. I will talk about histograms,
bar plots, density estimates and dot plots. Histograms can be done with the hist()

command:

hist(Duncan$prestige, nclass=10, xlab="Prestige", main="")

The nclass argument tells R how many bins you want. For whatever reason, it doesn’t
always give you exactly that many bars, but it does come close usually.

138

Prestige

F
re

qu
en

cy

0 20 40 60 80 100

0
2

4
6

8

If you wanted to impose a kernel density estimate over the bars, you could use lines()

with the density() command. Note that for this to work, you need the original histogram
to be in density (rather than frequency) units. You can accomplish this by specifying the
freq=FALSE argument.

hist(Duncan$prestige, nclass=10, xlab="Prestige",

main="", freq=FALSE, col="gray80")

lines(density(Duncan$prestige), col="red", lwd=1.5)

Prestige

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

139

You try it

Using the strikes_small.rda object, do the following:
1. Make a histogram of strike volume and impose a kernel

density estimate.

Bar plots can be made first by aggregating a continuous variable over the values of
some factor, then using barplot.

library(dplyr)

bp1 <- Duncan %>% group_by(type) %>% summarise(mp = mean(prestige))

bp1 <- bp1[order(bp1$mp),]

barplot(bp1$mp, horiz=F, names.arg = bp1$type)

Error in bp1$mp: $ operator is invalid for atomic vectors

bc wc prof

0
20

40
60

80

A dot-plot, often showing a set of estimates and confidence bounds arrayed relative
to a categorical variable, is relatively common these days. Let’s do this by first making
the confidence interval of repression for each region. Then we can make the dot-plot.

library(gmodels)

ag <- Duncan %>% group_by(type) %>% summarize(mp = mean(prestige),

lwr = ci(prestige)[2], upr = ci(prestige)[3])

Error in summarize(., mp = mean(prestige), lwr = ci(prestige)[2], upr =

ci(prestige)[3]): argument "by" is missing, with no default

ag

Error in eval(expr, envir, enclos): object ’ag’ not found

140

Now, we can make a dotplot:

ag <- ag[order(ag$mp),]

Error in eval(expr, envir, enclos): object ’ag’ not found

dotchart(agmp, agtype, xlim=c(10,90),

lcolor=NA, pch=16, xlab = "Prestige")

Error in dotchart(agmp, agtype, xlim = c(10, 90), lcolor = NA, pch = 16,

: object ’ag’ not found

segments(ag$lwr, 1:3, ag$upr, 1:3)

Error in segments(ag$lwr, 1:3, ag$upr, 1:3): object ’ag’ not found

bc

wc

prof

●

●

●

20 40 60 80

Prestige

You try it

Using the strikes_small.rda object, do the following:
1. Make a bar plot of average strike volume by country.

2. Make a dot plot of average strike volume by country.

12 ggplots

I have long had a preference for the lattice package’s graphcis because I think Cleveland’s
theoretical work is most compelling. However, ggplot is really quite dominant now and

141

growing moreso, so in the interest of showing you the most up-to-date softwarem we’ll
start there. According to Wickham (2009, p. 3), “a statistical graphic is a mapping from
data to aesthetic attributes (color, shape size) of geometric objects (points, lines, bars).”
The plot may contain transformations of the data that inform the scale or the coordinate
system. Finally, faceting, or grouping, can generate the same plot for different subsets
of the data. These components can be combined in various ways to make graphics. The
main elements of a ggplot are:

data/mappings The data that you want to represent visually.

geoms represent the elements you see on the plot (lines, points, shapes, etc...)

scales map the values of the data into an aesthetic space through colors, sizes or shapes.
They also draw legends or axes that allow users to read original data values from
the plot.

coord the coordinate system describes how coordinates are mapped to a two-dimensional
graph.

facet describes how to subset the data.

12.1 Scatterplot

Let’s go back to our scatterplot with the Duncan data. As you’ll see, the more complicated
aspects of what we did above will become quite easy here. First, we need to initialize the
plot with the ggplot() function.

g <- ggplot(Duncan, aes(x=income, y=prestige))

The above won’t produce any output, we need to add geometric elements to the plot
for it to display information.

g <- g + geom_point(pch=1)

g

142

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

20 40 60 80

income

pr
es

tig
e

There are some things not to like about this plot. I’m not a huge fan of the gray
background (I’d prefer white) and I want the aspect ratio to be 1. I could implement
both of these with the following:

g <- g + theme_bw() + theme(aspect.ratio=1)

g

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

20 40 60 80

income

pr
es

tig
e

This gets us in pretty good shape. Now, we can start adding in some of the other
elements (like symbols and colors that depend on occupation type).

g <- ggplot(Duncan, aes(x=income, y=prestige, colour=type, shape=type)) +

geom_point() + theme_bw() + theme(aspect.ratio=1)

g

143

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

20 40 60 80

income

pr
es

tig
e

type

● prof

bc

wc

If you don’t like the colors or shapes, those can both be changed like the following:

g <- ggplot(Duncan, aes(x=income, y=prestige, colour=type, shape=type)) +

geom_point() + theme_bw() + theme(aspect.ratio=1) + scale_shape_manual(values=c(1,2,3))

g

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

20 40 60 80

income

pr
es

tig
e

type

● prof

bc

wc

The scale_colour_manual() function will change the colors if you want different
colors.

g <- ggplot(Duncan, aes(x=income, y=prestige, colour=type, shape=type)) +

geom_point() + theme_bw() + theme(aspect.ratio=1) +

scale_shape_manual(values=c(1,2,3)) +

scale_colour_manual(values=c("blue", "black", "red"))

g

144

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

20 40 60 80

income

pr
es

tig
e

type

● prof

bc

wc

Finally, to make the plot just like before, we can use the xlab() and ylab() functions.

g <- ggplot(Duncan, aes(x=income, y=prestige, colour=type, shape=type)) +

geom_point() + theme_bw() + theme(aspect.ratio=1) +

scale_shape_manual(values=c(1,2,3)) +

scale_colour_manual(values=c("blue", "black", "red")) +

xlab('% males earnings > $3500/year') +

ylab('% of NORC raters indicating profession as good or excellent')

g

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

20 40 60 80

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

type

● prof

bc

wc

The real value comes here when adding in a regression line. This can be done with
just adding geom_smooth().

145

g <- ggplot(Duncan, aes(x=income, y=prestige, colour=type, shape=type)) +

geom_point() + geom_smooth(method="lm") +

theme_bw() + theme(aspect.ratio=1) +

scale_shape_manual(values=c(1,2,3)) +

scale_colour_manual(values=c("blue", "black", "red")) +

xlab('% males earnings > $3500/year') +

ylab('% of NORC raters indicating profession as good or excellent')

g

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

20 40 60 80

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

type

● prof

bc

wc

These plots have all been superposed - the lines and points are all in the same region.
Another option is to juxtapose the plot. We can do this with the facet_wrap() function.

g <- ggplot(Duncan, aes(x=income, y=prestige)) +

geom_point() + geom_smooth(method="lm") +

theme_bw() + theme(aspect.ratio=1) +

facet_wrap(~type) +

xlab('% males earnings > $3500/year') +

ylab('% of NORC raters indicating profession as good or excellent')

g

146

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

prof bc wc

20 40 60 80 20 40 60 80 20 40 60 80

0

25

50

75

100

% males earnings > $3500/year

%
 o

f N
O

R
C

 r
at

er
s

in
di

ca
tin

g
pr

of
es

si
on

 a
s

go
od

 o
r

ex
ce

lle
nt

12.1.1 Bar Graph

One of the benefits of the ggplot tools is that they can do both the data manipulation
and the plotting all in one.

ggplot(Duncan, aes(x=type, y=prestige)) +

stat_summary(geom="bar", fun.y=mean) +

theme_bw()

0

20

40

60

80

prof bc wc

type

pr
es

tig
e

If you want to order the bars by height, you can do that in the aesthetic part of the
function.

147

ggplot(Duncan, aes(x=reorder(type, prestige, mean), y=prestige)) +

stat_summary(geom="bar", fun.y=mean) +

theme_bw()

0

20

40

60

80

bc wc prof

reorder(type, prestige, mean)

pr
es

tig
e

Side-by-side barplots can be accomplished in a lot the same way as in Lattice.

p <- ggplot(subset(Chile, !is.na(education)), aes(x=reorder(region, income, mean, na.rm=TRUE), y=income, fill=education)) +

stat_summary(fun.y=mean, geom="bar", position = position_dodge(1)) +

xlab("Region") +

theme_bw()

p

0

20000

40000

60000

80000

M S N C SA

Region

in
co

m
e

education

P

PS

S

148

12.2 Other Plots

You can also make the whole set of other plots with ggplot2 as well. Here are a few
examples.

12.2.1 Histograms and Barplots

p <- ggplot(Duncan, aes(prestige))

p2 <- p + xlim(1,101) + geom_histogram(aes(y = ..density..),

color="black", size=.25, fill="gray75", breaks=seq(1,101,by=10)) +

theme_bw() + theme(aspect.ratio=1)

p2

0.000

0.005

0.010

0.015

0 25 50 75 100

prestige

de
ns

ity

149

and now with density lines

p2 + stat_density(geom = "line", col="red")

0.000

0.005

0.010

0.015

0 25 50 75 100

prestige

de
ns

ity

12.2.2 Dotplot

ggplot(Duncan, aes(x=reorder(type, prestige, mean), y=prestige)) +

add an error-bar geometry

that uses the mean_cl_normal

function from the Hmisc package.

stat_summary(geom="errorbar", fun.data=mean_cl_normal, width=.1) +

add points at the mean of

prestige for each type.

stat_summary(geom="point", fun.y=mean) +

add an x-label.

xlab("Occupation Type")

150

●

●

●

25

50

75

bc wc prof

Occupation Type

pr
es

tig
e

One thing we might want to change is the labels on the bars. Perhaps we would want
them to be “Blue Collar”, “White Collar”, and “Professional”. To do this we could either
change the levels of the variable (which would persist beyond the plotting command we’re
using) or we could issue a call to scale_x_discerte() which would allow us to change
the labels as we do below:

ggplot(Duncan, aes(x=reorder(type, prestige, mean), y=prestige)) +

stat_summary(geom="errorbar", fun.data=mean_cl_normal, width=.1) +

stat_summary(geom="point", fun.y=mean) +

xlab("Occupation Type") +

scale_x_discrete(labels=c("Blue Collar", "White Collar", "Professional"))

151

●

●

●

25

50

75

Blue Collar White Collar Professional

Occupation Type

pr
es

tig
e

152

12.3 Faceting

ggplot2 is also really good with dependent data. There are two different commands
that do faceting (juxtaposition rather than superposition). These are the facet_wrap()

and facet_grid() functions. The facet_wrap() function takes a single sided formula
as its argument and it will then make as many panels as groups wrapping them on to
new lines if necessary. The facet_grid() function creates a grid of panels from two (or
more) variables. For example, facet_wrap(~z) would make a panel in the plot for each
different group of the variable z, putting some on the second or third lines if necessary.
Here’s an example:

library(car)

data(Ornstein)

ggplot(Ornstein, aes(x=log(assets), y=interlocks)) +

geom_point(pch=1) + facet_wrap(~sector)

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●●

●

●

●●●

●

●
●

●
●

●

●

●

●
●●
●
●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●●●●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●●●●

●

●
●

●

●
●

●●
●●
●

●●●

●

●

●

●
●
●

●

●

●●

●

●
●

●
●●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●●●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●●
●

●
●

●

●

●

TRN WOD

HLD MAN MER MIN

AGR BNK CON FIN

4 6 8 10 12 4 6 8 10 12

4 6 8 10 12 4 6 8 10 12

0

30

60

90

0

30

60

90

0

30

60

90

log(assets)

in
te

rlo
ck

s

The facet grid works differently, by making the rows of the display relate to the variable
on the left-hand side of the tilde and the columns to the variable on the right-hand side,
like below:

library(car)

data(Ornstein)

ggplot(Ornstein, aes(x=log(assets), y=interlocks)) +

geom_point(pch=1) +

facet_grid(sector ~ nation)

153

●
●●●

●

●

●●
●

●
●●●●
●●

●
●●
●●

●

●●●
●●

●

●

●

●

●

●●

●

●●

●

●
●
●
●●●

●●
●

●
●
●●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●
●
●●
●
●

●

●

●

●●

●
●

●

●●
●●●●

●

●
●

●
●

●

●

●●●

●

●

●
●

●
●

●●●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●●
●

●
●

●●
●

●

●

●
●●●

●

●

●

●

●●
●

●
●●

●

●●

●

●●●
●●●

●
●●●

●
●
●

●●
●
●

●

●

●

●
●

●●

●●●●●
●
●

●●
●●●

●●●

●
●
●●●●●●

●

●●
●

●
●●

●

●

●
●

●
●●

●

●
●●●

●

●
●
●●●
●
●
●

●
●

●●●●●●

●

●
●●●●

●

●●●●
●

CAN OTH UK US

A
G

R
B

N
K

C
O

N
F

IN
H

LD
M

A
N

M
E

R
M

IN
T

R
N

W
O

D

4 6 8 10 12 4 6 8 10 12 4 6 8 10 12 4 6 8 10 12

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

log(assets)

in
te

rlo
ck

s

Adding a regression line in each panel is also easy:

ggplot(Ornstein, aes(x=log(assets), y=interlocks)) +

geom_point(pch=1) +

facet_wrap(~sector) +

geom_smooth(method="lm", se=FALSE, fullrange=TRUE)

154

●
●●●●

●

●
●

●
●

●●●
●
●

●

●
●●●●
●
●
●●●

●
●●
●●●

●

●●●●●●●●
●
●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●●
●●●●●●●●

●

●

●

●

●

●●

●

●
●

●

●
●

●●●

●●●

●

●●●●●
●●●

●
●●●●

●●●
●●●
●
●

●

●●●

●
●
●●

●

●●●●●●

●

●

●●

●

●
●●

●

●●

●

●
●
●●

●
●

●

●

●●●●

●
●

●●

●
●●

●

●●●
●●●●

●
●
●●●

●

●
●

●
●●●

●●
●

●
●●●
●
●
●
●

●
●

●
●

●

●

●
●

●●

●

●

●
●●

●
●

●

●
●

●●

●

●
●
●

●●
●

●

●
●

●
●
●
●●
●
●●●

●●

●

●
●●

●

●

●●●●
●●
●●●

TRN WOD

HLD MAN MER MIN

AGR BNK CON FIN

4 6 8 10 12 4 6 8 10 12

4 6 8 10 12 4 6 8 10 12

−100

0

100

−100

0

100

−100

0

100

log(assets)

in
te

rlo
ck

s

155

12.4 Bringing Lots of Elements Together

There are other ways to do this, but just imagine that we wanted to show predictions for
two models, one linear in income and one using a cubic polynomial. This would require
us take several steps on our way to making a plot of the results.

1. Estimate both models:

mod1 <- lm(prestige ~ income + education + type, data=Duncan)

mod2 <- lm(prestige ~ poly(income, 3) + education + type, data=Duncan)

2. Calculate the effects in both models:

e1 <- predictorEffect("income", mod1, focal.levels=25)

e2 <- predictorEffect("income", mod2, focal.levels=25)

3. Take the results of the effects and put them into a dataset.

ed1 <- do.call("data.frame", e1[c("x", "fit", "lower", "upper")])

ed1$model <- factor(1, levels=1:2, labels=c("Linear", "Polynomial"))

ed2 <- do.call("data.frame", e2[c("x", "fit", "lower", "upper")])

ed2$model <- factor(2, levels=1:2, labels=c("Linear", "Polynomial"))

4. Append the datasets to make a single dataset.

plot.dat <- rbind(ed1, ed2)

5. Make the Plot, first, let’s just make the lines:

g <- ggplot(plot.dat, aes(x=income, y=fit, colour=model)) +

geom_line() +

theme_bw() +

theme(aspect.ratio=1)

g

156

30

40

50

60

70

20 40 60 80

income

fit

model

Linear

Polynomial

Now, if we wanted to put confidence bounds around them, we could use the ribbon
geometry.

g <- ggplot(plot.dat, aes(x=income, y=fit, colour=model)) +

geom_ribbon(aes(ymin = lower, ymax=upper, fill=model),

alpha=.25, size=0) +

geom_line() +

ylab("Predicted Prestige") +

theme_bw() +

theme(aspect.ratio=1)

g

20

40

60

80

20 40 60 80

income

P
re

di
ct

ed
 P

re
st

ig
e

model

Linear

Polynomial

There is likely a way either using some of the stat_ functions or with visreg, but
sometimes the easiest thing is to put together pieces that you already know.

157

13 Maps

One of the real benefits on R is that it is relatively easy to make good looking maps.
You’ll need a shape file (and the associated auxiliary files) and potentially some extra
data you want to plot. The most recent advancement in organizing spatial data in R
is called a “simple features dataframe”. This method for organizing and managing data
is operationalized in the sf package. The novelty here is that all of the geographic
information is represented in a single column (variable) in the data frame. This makes
subsetting and other data management tasks a bit easier.

Before trying to install the sf package, please look at the instructions, which differ for
Windows and Mac and are available here: https://github.com/r-spatial/sf. These
require the installation of some additional software.

I’m going to show you a couple of different examples here. The first one is the ideal
situation where you have a consistent, standardized numeric identifier in both the spatial
data and the data you want to plot. After some googling, I ended up finding the county
boundary files (along with lots of other us geographies) here:
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.

html

This downloaded a .zip archive that contained 7 files. I’ve put a link to the .zip file on the
course website.

library(sf)

counties <- st_read("county_boundaries/cb_2018_us_county_20m.shp")

Reading layer `cb_2018_us_county_20m' from data source `/Users/david/Dropbox (DaveArmstrong)/IntroR/Boulder/county_boundaries/cb_2018_us_county_20m.shp' using driver `ESRI Shapefile'

Simple feature collection with 3220 features and 9 fields

geometry type: MULTIPOLYGON

dimension: XY

bbox: xmin: -179.1743 ymin: 17.91377 xmax: 179.7739 ymax: 71.35256

epsg (SRID): 4269

proj4string: +proj=longlat +datum=NAD83 +no_defs

head(counties)

Simple feature collection with 6 features and 9 fields

geometry type: MULTIPOLYGON

dimension: XY

bbox: xmin: -99.20277 ymin: 31.44832 xmax: -76.22014 ymax: 41.59003

epsg (SRID): 4269

proj4string: +proj=longlat +datum=NAD83 +no_defs

STATEFP COUNTYFP COUNTYNS AFFGEOID GEOID NAME LSAD ALAND

1 37 017 01026336 0500000US37017 37017 Bladen 06 2265887723

2 37 167 01025844 0500000US37167 37167 Stanly 06 1023370459

3 39 153 01074088 0500000US39153 39153 Summit 06 1069181981

4 42 113 01213687 0500000US42113 42113 Sullivan 06 1165338428

5 48 459 01384015 0500000US48459 48459 Upshur 06 1509910100

6 48 049 01383810 0500000US48049 48049 Brown 06 2446120250

158

https://github.com/r-spatial/sf
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html

AWATER geometry

1 33010866 MULTIPOLYGON (((-78.902 34....

2 25242751 MULTIPOLYGON (((-80.49737 3...

3 18958267 MULTIPOLYGON (((-81.68699 4...

4 6617028 MULTIPOLYGON (((-76.81373 4...

5 24878888 MULTIPOLYGON (((-95.15274 3...

6 32375524 MULTIPOLYGON (((-99.19587 3...

Next, we’ll need to read in some data to plot. I’ve grabbed the 2016 crime data from
ICPSR’s data archive.

library(rio)

crime <- import("crime_data_2016.csv")

The main thing we need to be aware of is that the FIPS codes are named different things
in the two data sets and we need to change that.

names(crime)[which(names(crime) == "FIPS_ST")] <- "STATEFP"

names(crime)[which(names(crime) == "FIPS_CTY")] <- "COUNTYFP"

One thing that we would notice when we tried to merge these together is that the variables
are of two different types. We need to change the one in the counties data to be integers. This
is a strange case because the numbers that are the levels of the factors are not necessarily the
same as the numeric values of the factor (I know, this is confusing). What we can do is the
following:

counties$STATEFP <- as.integer(as.character(counties$STATEFP))

counties$COUNTYFP <- as.integer(as.character(counties$COUNTYFP))

Now, we can merge the two datasets together.

library(dplyr)

counties <- left_join(counties, crime)

To make the plotting easier, we’re going to take out Hawaii and Alaska:

counties <- counties[-which(counties$STATEFP %in% c(2, 15, 66, 72)),]

Finally, we can make the map. There are lots of ways to do this. One that looks pretty
good right out of the box is the one made with tmap() which is what we’ll discuss.

library(tmap)

counties$logcrime <- log(counties$crime_rate_per_100000)

tm_shape(counties) + tm_fill(col="logcrime", palette = "RdBu", title="Log(Crime Rate/100000)")

159

You’ll notice that what happened above was relatively simple. Matching up the places was
relatively easy and didn’t really require any manual changes. An example of the opposite is any
time we want to match up countries. There are loads of different country codes and even lots of
different ways to spell and format country names. Unless you happen on to two datasets that
use the same numeric codes, there may be a bit of manual matching. There is a package called
countrycode that does a lot of the work. The World Bank data already has

data(world, package="spData")

wbmig <- import("wbmig.dta")

library(countrycode)

world$ccode <- countrycode(world$iso_a2, "iso2c", "cown")

wbmig$ccode <- as.integer(wbmig$ccode)

wbmig <- subset(wbmig, !is.na(ccode))

world <- left_join(world, wbmig)

world$logmig <- log(world$wbpropmig)

Here, the data managing is, by far, the hardest part. Making the map is actually quite easy.

tm1 <- tm_shape(world) +

tm_fill(col="logmig", title="Log(Proportion of Migrants)") +

tm_borders(col="gray50", lwd=.5)

160

The output from tmap can also be made into an interactive leaflet map, with a single
command:

tmap_leaflet(tm1)

This will open up a web browser with your map. All javascript libraries required to render the
map will be in the map’s root directory. This makes it relatively easy to host the map on your
website.

R also has lots of spatial statistics routines. First, we have to convert the simple features
dataframe into a spatial polygons data fgrame. This can be done as follows:

worldsp <- as(world, "Spatial")

class(worldsp)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

One simple thing that you might have to figure out which polygons are neighbors. You could
do this as follows and we can find out which polygons border which others with the following:

library(spdep)

nl <- poly2nb(worldsp)

worldsp@data[172,]

iso_a2 name_long continent region_un subregion type

172 UG Uganda Africa Africa Eastern Africa Sovereign country

area_km2 pop lifeExp gdpPercap ccode Country_Name Country_Code

172 245768.5 38833338 59.224 1637.275 500 201 199

wbpropmig logmig

172 2.271231 0.8203218

worldsp@data[nl[[172]],]

161

iso_a2 name_long continent region_un

2 TZ Tanzania Africa Africa

12 CD Democratic Republic of the Congo Africa Africa

13 CD Democratic Republic of the Congo Africa Africa

15 KE Kenya Africa Africa

173 RW Rwanda Africa Africa

180 SS South Sudan Africa Africa

subregion type area_km2 pop lifeExp gdpPercap

2 Eastern Africa Sovereign country 932745.79 52234869 64.163 2402.0994

12 Middle Africa Sovereign country 2323492.48 73722860 58.782 785.3473

13 Middle Africa Sovereign country 2323492.48 73722860 58.782 785.3473

15 Eastern Africa Sovereign country 590836.91 46024250 66.242 2753.2361

173 Eastern Africa Sovereign country 23365.41 11345357 66.188 1629.8689

180 Eastern Africa Sovereign country 624909.10 11530971 55.817 1935.8794

ccode Country_Name Country_Code wbpropmig logmig

2 510 190 198 2.0546392 0.7201002

12 490 40 36 44.3563753 3.7922564

13 490 45 213 0.8886225 -0.1180827

15 501 100 100 2.2077830 0.7919888

173 517 160 165 4.6211463 1.5306428

180 626 176 176 NA NA

A spatial weight matrix allows us to capture, in a matrix form, the neighbor-relationships
between all observations.

wmat <- nb2listw(nl, zero.policy=TRUE)

print.listw(wmat, zero.policy=TRUE)

Characteristics of weights list object:

Neighbour list object:

Number of regions: 180

Number of nonzero links: 672

Percentage nonzero weights: 2.074074

Average number of links: 3.733333

21 regions with no links:

1 21 22 24 25 47 48 49 80 91 138 139 140 141 142 144 148 151 159 163 179

##

Weights style: W

Weights constants summary:

n nn S0 S1 S2

W 159 25281 159 97.80043 700.6661

Here, weights are 1
#Neighbors ; for binary weights use style='B' as an argument to the nb2listw

function.
Just like we have to care about temporal autocorrelation, we should also care about spatial

autocorrelation - the non-independence of residuals for geographically proximate units. Moran’s
I is a measure of this:

I =
n∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(yi − ȳ)(yj − ȳ)∑n
i=1(yi = ȳ)2

162

In R, you can calculate Moran’s I as follows:

moran.test(worldsp@data$logmig, wmat, zero.policy=TRUE, na.action=na.omit)

##

Moran I test under randomisation

##

data: worldsp@data$logmig

weights: wmat

omitted: 3, 22, 23, 24, 25, 45, 47, 81, 96, 138, 144, 153, 163, 164, 171, 176, 178, 180 n reduced by no-neighbour observations

##

##

Moran I statistic standard deviate = 4.7019, p-value = 1.289e-06

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

0.301267282 -0.006849315 0.004294289

These are for continuous variables, the joincount.test() and joincount.multi() functions
could be used for categorical variables. If the underlying distributional assumptions are dubious,
a permutation test is also possible.

moran.mc(worldsp@data$logmig, wmat, zero.policy=TRUE, na.action=na.omit, nsim=1000)

##

Monte-Carlo simulation of Moran I

##

data: worldsp@data$logmig

weights: wmat

omitted: 3, 22, 23, 24, 25, 45, 47, 81, 96, 138, 144, 153, 163, 164, 171, 176, 178, 180

number of simulations + 1: 1001

##

statistic = 0.28897, observed rank = 1001, p-value = 0.000999

alternative hypothesis: greater

We can also look at the local Moran’s I statistics that aggregate to produce the global estimate:

Ii =
(yi − ȳ)

∑n
j=1 wij(yj − ȳ)∑n

i=1(yi=ȳ)2

n

worldsp2 <- as(world[which(!is.na(world$logmig)),], "Spatial")

l <- localmoran(worldsp2$logmig, nb2listw(poly2nb(worldsp2),

style="C", zero.policy=T), zero.policy=TRUE, na.action=na.omit)

worldsp2@data$localI <- l[,1]

We can then use the tmap package to map the local autocorrelation.

163

worldsf2 <- as(worldsp2, "sf")

tm_shape(worldsf2) + tm_fill(col="localI",

palette = "RdBu", title="Moran's I",

breaks= c(-Inf, -2, 0, 2, Inf)) + tm_borders() +

tm_layout(legend.position = c("left", "center"))

Using the world data that is in the spData package, we can do more interesting statistical
things (because there are more interesting variables). Using the same process as above, we can
make the neighbors list and then make a neighborhood mean of a variable that could be used
in a regression model.

data(world)

world <- as(world, "Spatial")

nl <- poly2nb(world)

wmat <- nb2listw(nl, zero.policy=TRUE)

localStat <- function(x, neigh, stat="mean", ...){
out <- sapply(nl, function(z)do.call(stat, list(x=x[z], ...)))

return(out)

}
world@data$lifeExp_L1 <- localStat(world@data$lifeExp, nl, na.rm=T)

slmod <- lm(lifeExp ~ lifeExp_L1 + log(gdpPercap) + log(pop), data=world@data)

summary(slmod)

##

Call:

lm(formula = lifeExp ~ lifeExp_L1 + log(gdpPercap) + log(pop),

data = world@data)

##

Residuals:

Min 1Q Median 3Q Max

-9.988 -1.984 0.107 2.113 9.253

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.86752 4.39534 -2.245 0.0263 *

164

lifeExp_L1 0.68393 0.05755 11.884 < 2e-16 ***

log(gdpPercap) 2.70317 0.34868 7.753 1.63e-12 ***

log(pop) 0.46101 0.19105 2.413 0.0171 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 3.473 on 141 degrees of freedom

(32 observations deleted due to missingness)

Multiple R-squared: 0.8279,Adjusted R-squared: 0.8243

F-statistic: 226.1 on 3 and 141 DF, p-value: < 2.2e-16

We could also use the bespoke spatial regression function:

summary(slmod2 <- lagsarlm(lifeExp ~ log(pop) + log(gdpPercap), data=world@data,

listw = wmat, zero.policy=T))

##

Call:

lagsarlm(formula = lifeExp ~ log(pop) + log(gdpPercap), data = world@data,

listw = wmat, zero.policy = T)

##

Residuals:

Min 1Q Median 3Q Max

-19.9247 -2.1895 0.8774 3.0410 7.9731

##

Type: lag

Regions with no neighbours included:

1 20 46 47 79 90 97 136 137 138 139 145 148 156 162 176

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.66959 5.12973 3.0547 0.002253

log(pop) 0.28423 0.24261 1.1716 0.241377

log(gdpPercap) 5.59441 0.32494 17.2166 < 2.2e-16

##

Rho: -0.0078364, LR test value: 0.20186, p-value: 0.65322

Asymptotic standard error: 0.017465

z-value: -0.44869, p-value: 0.65365

Wald statistic: 0.20132, p-value: 0.65365

##

Log likelihood: -479.2826 for lag model

ML residual variance (sigma squared): 23.409, (sigma: 4.8383)

Number of observations: 160

Number of parameters estimated: 5

AIC: 968.57, (AIC for lm: 966.77)

LM test for residual autocorrelation

test value: 54.805, p-value: 1.3312e-13

165

14 Reproducibility and Tables from R to Other Soft-

ware

One thing that is important to figure out is how to easily export tables and other output from
R to whatever software you tend to write in. The good news is that there are lots of options
here. The bad news is that the ease of integrating R output into your document is more or less
inversely proportional to how easy it is to interact with the writing software. By that, I mean
that it is easiest to get R tables and figures into LATEX. In fact, it is possible (as I’ve done in
these handouts) write a single document that has all prose and code that is processed by R and
then LATEXto produce both the analysis and the final document. This is great, by LATEXhas
a pretty steep learning curve relative to other composition software (though not compared to
other markup languages). The next easiest thing is to write in Markdown. Markdown is a
lightweight typesetting environment that is intended to produce output for the web, but can
produce it in other formats, too. Just like with LATEX, RMarkdown incorporates R code into a
markdown document and then it executes the analysis and typesets the document. We’ll talk
more about this in a bit. Finally, there are ways to get your tables into Word, but it’s a bit
more of a hassle, though we’ll discuss that, too.

There is an interesting package called stargazer that allows you to make publication quality
tables. These export to LATEX, html or text, though the text option which might be the most
interesting option for many people doesn’t work well with Word. Below, we’ll talk about some
other options. Considering the two models estimated below, we could do the following:

166

library(rio)

strikes <- import("https://quantoid.net/files/rbe/strikes_small.rda")

library(stargazer)

mod1 <- lm(log(strike_vol + 1) ~ inflation +

unemployment + sdlab_rep, data=strikes)

mod2 <- lm(log(strike_vol + 1) ~ union_cent +

unemployment + sdlab_rep, data=strikes)

stargazer(mod1, mod2, type="text")

##

===

Dependent variable:

log(strike_vol + 1)

(1) (2)

inflation 0.146***

(0.023)

##

union_cent -2.683***

(0.301)

##

unemployment 0.210*** 0.174***

(0.031) (0.030)

##

sdlab_rep 0.001 -0.008

(0.008) (0.007)

##

Constant 2.418*** 5.303***

(0.389) (0.394)

##

Observations 352 352

R2 0.234 0.302

Adjusted R2 0.227 0.296

Residual Std. Error (df = 348) 1.835 1.752

F Statistic (df = 3; 348) 35.452*** 50.130***

===

Note: *p<0.1; **p<0.05; ***p<0.01

There are a few things that we might want to change here. First, we might want to put
different variable names in.

stargazer(mod1, mod2, type="text", notes.append=F,

star.cutoffs = .05, notes="*p < 0.05, two-sided",

covariate.labels=c("Inflation", "Union Percentage",

"Unemployment Rate", "Soc.Dem./Labor Percentage in Legis.",

"Intercept"))

167

##

===

Dependent variable:

log(strike_vol + 1)

(1) (2)

Inflation 0.146*

(0.023)

##

Union Percentage -2.683*

(0.301)

##

Unemployment Rate 0.210* 0.174*

(0.031) (0.030)

##

Soc.Dem./Labor Percentage in Legis. 0.001 -0.008

(0.008) (0.007)

##

Intercept 2.418* 5.303*

(0.389) (0.394)

##

Observations 352 352

R2 0.234 0.302

Adjusted R2 0.227 0.296

Residual Std. Error (df = 348) 1.835 1.752

F Statistic (df = 3; 348) 35.452* 50.130*

===

Note: *p < 0.05, two-sided

168

Once you’ve got the table how you like it, you can export it to a file in html format as
follows:

stargazer(mod1, mod2, type="html", notes.append=F,

out = "table.html", star.cutoffs = .05,

notes="*p < 0.05, two-sided",

covariate.labels=c("Inflation", "Union Percentage",

"Unemployment Rate", "Soc.Dem./Labor Percentage in Legis.",

"Intercept"))

Then, you can go to Word and choose Insert ¿¿ Object ¿¿ Text from File ¿¿ and browse to
the table.html file to which you just saved the output. This will produce the following output
in Word with no intervention.

If you wanted stargazer to take account of these robust standard errors in its summary, you
can do that. First, you need to get the robust standard errors by taking the square root (sqrt)
of the diagonal (diag) of the robust variance-covariance matrix (vcovHC)

library(stargazer)

library(sandwich)

library(lmtest)

mod1 <- lm(log(strike_vol + 1) ~ inflation +

unemployment + sdlab_rep, data=strikes)

mod1 <- lm(log(strike_vol + 1) ~ inflation +

unemployment + sdlab_rep, data=strikes)

mod2 <- lm(log(strike_vol + 1) ~ union_cent +

unemployment + sdlab_rep, data=strikes)

se1 <- mod1 %>% vcovHC(., type="HC3") %>% diag %>% sqrt

se2 <- mod2 %>% vcovHC(., type="HC3") %>% diag %>% sqrt

169

library(stargazer)

stargazer(mod1, mod2, type="text", notes.append=F,

star.cutoffs = .05,

notes="*p < 0.05, two-sided",

covariate.labels=c("Inflation", "Union Percentage",

"Unemployment Rate", "Soc.Dem./Labor Percentage in Legis.",

"Intercept"), se=list(se1, se2))

##

===

Dependent variable:

log(strike_vol + 1)

(1) (2)

Inflation 0.146*

(0.019)

##

Union Percentage -2.683*

(0.273)

##

Unemployment Rate 0.210* 0.174*

(0.030) (0.030)

##

Soc.Dem./Labor Percentage in Legis. 0.001 -0.008

(0.007) (0.007)

##

Intercept 2.418* 5.303*

(0.378) (0.406)

##

Observations 352 352

R2 0.234 0.302

Adjusted R2 0.227 0.296

Residual Std. Error (df = 348) 1.835 1.752

F Statistic (df = 3; 348) 35.452* 50.130*

===

Note: *p < 0.05, two-sided

15 Reproducible Research

There are now entire books written on implementing reproducible research designs in R:

• “Reproducible Research with R and R Studio” by Christopher Gandrud

• “Dynamic Documents with R and knitr” by Yihui Xie

• “Implementing Reproducible Research” by Victoria Stodden, Friedrich Leisch and Roger
D. Peng

170

We will touch on a couple of aspects of this today. Here are a few basic pointers.

• At the end of your project, you should be able to run a script that reproduces your results
without intervention (i.e., you shouldn’t have to do anything aside from run the script).

• It is good practice to have your code build data from scratch wherever possible. That is,
if you download the Polity dataset and the CIRI dataset and some data from the World
Bank, your code should start with reading in and managing these data to produce a final
merged dataset.

Rstudio offers a couple of ways to make reproducible research with Rmarkdown and knitr
- we can make article-like documents or presentations. To make an article-like document in
Rstudio, click on the button for a new document and selected new Rmarkdown document.

For now, I’ve got three example documents:

• One article-type document (reproducible.Rmd),

• One presentation doucment (reproducible_present.Rmd),

• One article-type document in LATEX

Hopefully get you going in the right direction. We will look through those documents and
discuss as necessary.

16 Web Sites to Data

The web is a great source of data. When we think about getting data from the web, we
could mean a couple of different things. First, we could mean something relatively simple like
automatically importing a table from a website into your stats software. The other thing we
could mean is downloading text from a webiste (or social media platform such as Twitter) and
then trying to turn that text into data. We’ll talk about both different things in turn.

16.1 Importing HTML Tables

Importing HTML tables is relatively easy, though there are lots of cases where it csn get more
complicsted. This works best when the every row of the table has the same number of columns
and every cell has only one row. Let’s say that we wanted to import this table into R:

The process for doing this is to first read in the entire website and then pulling out the
tables. Unless the html table tag has a unique class or other identifier that you could drill down
on, the function will grab all of the tables and you’ll have to figure out which one you want. To
read in websites, we’ll use the rvest package.

171

library(rvest)

india <- read_html("https://en.wikipedia.org/wiki/List_of_political_parties_in_India")

tabs <- html_table(india, fill=T)

head(tabs[[3]])

Name Abbreviation Foundation year

1 Aam Aadmi Party AAP 2012

2 All India Anna Dravida Munnetra Kazhagam AIADMK 1972

3 All India Forward Bloc AIFB 1939

4 All India Majlis-e-Ittehadul Muslimeen AIMIM 1927

5 All India N.R. Congress AINRC 2011

6 All India United Democratic Front AIUDF 2004

Current leader(s) States/UT

1 Arvind Kejriwal Delhi, Punjab

2 Edappadi K. Palaniswami and O. Paneerselvam Tamil Nadu, Puducherry

3 Debabrata Biswas West Bengal

4 Asaduddin Owaisi Telangana

5 N. Rangaswamy Puducherry

6 Badruddin Ajmal Assam

Symbol

1

2

3

4

5

6

Here’s an example of a table that works less well:

Let’s try the same thing:

library(rvest)

uk <- read_html("https://en.wikipedia.org/wiki/List_of_Prime_Ministers_of_the_United_Kingdom")

tabs <- html_table(uk, fill=T)

colnames(tabs[[2]]) <- c("", "Portrait", "PM", "Start", "End",

"Year", "portfolio", "party", "ministry", "monarch", "note")

tabs[[2]] <- tabs[[2]][-1,]

172

tabs[[2]][1:2,]

Portrait

2

3

PM

2 The Right HonourableSir Robert Walpole1st Earl of OrfordKGKBPCMP for King's Lynn[§](1676{1745)
3 The Right HonourableSir Robert Walpole1st Earl of OrfordKGKBPCMP for King's Lynn[§](1676{1745)
Start End Year

2 3 April1721 11 February1742 1722

3 3 April1721 11 February1742 1727

portfolio

2 Chancellor of the ExchequerFirst Lord of the TreasuryLeader of the House of Commons (1721{1742)Sec. of State for the Northern Dept. (1723)

3 Chancellor of the ExchequerFirst Lord of the TreasuryLeader of the House of Commons (1721{1742)Sec. of State for the Northern Dept. (1723)

party ministry monarch note

2 Whig Walpole{Townshend George I(1714{1727) [30]

3 Whig Walpole{Townshend George II(1727{1760) [30]

This works less well, though the information is there, so it is likely easier than typing it in
yourself.

16.2 Scraping Websites for Content

Website and social media scraping has really been a game-changer in generating new data to
test our social scientigfic theories. R has good facilities for handling text data. It’s probably
not quite as good as python, but the startup cost is lower.

One thing that’s really important here is that you need to make sure you know what the
terms of service for the site you’re scraping allow. This is sometimes not particularly easy,
but it is important. There was recently some discussion on the POLMETH listserv about how
Facebook prohibits scraping its sites in any other way than using their own API. In some cases,
you have access to APIs through R (e.g., twitteR).

In any event, rvest is the way that we read text data in, too. In fact, we read in the website
the same way we did when scraping a table.

library(rvest)

h <- read_html("https://www.state.gov/reports/2018-country-reports-on-human-rights-practices/afghanistan/")

The next step after this is to highlight the text that you want. There are a couple of ways to
do this. One way is to dig around in the html code to find the right tag that isolates your text.
This is sometimes not that difficult, but if you’re not familiar with how html works (at least
in principle), it can be pretty daunting to try to figure it out. The other option is to use the
“selector gadget” tool: http://selectorgadget.com/. When I look at the state department
website above and turn on the selector gadget tool, I isolated the block tha I wanted and hit
the “xpath” button. It produce the following:

173

http://selectorgadget.com/

You can translate that information into R’s language as follows:

text <- html_node(h, xpath = "//div[starts-with(@class, 'report__content')]") %>% html_text

Now, in the text object, is all of the text of the country report. In terms of getting the text
in, this is all that is required.

16.2.1 Text (Pre-)Processing

The next step in the process is to process the text and turn ito into a document-feature matrix.
To do this, we’ll use the quanteda package. R also has another package to deal with textual
data (tm), but quanteda is a bit easier to work with. In the quanteda package, there is a
function called dfm which produces a document-feature matrix from unstructured text. This
function also does the text pre-processing, too. You can choose what pre-processing you do by
specifying the following arguments:

• To stem the document use, stem = TRUE

• To remove stop words use, remove = stopwords()

• To remove numbers use, remove_numbers = TRUE

• To remove punctuation use, remove_punct = TRUE

• To remove symbols use, remove_symbols = TRUE,

• To keep n-grans of order higher than 1 use, ngrams = 1:3 (e.g., to keep single words,
bi-grams and tri-grams).

• To convert all letters to lower case use, tolower = TRUE

library(quanteda)

dfmat <- dfm(text,

tolower=TRUE, remove=stopwords(),

remove_numbers=TRUE, remove_punct=TRUE,

remove_symbols=TRUE, ngrams=1)

topfeatures(dfmat, n=10)

law government reported women children cases

117 109 69 60 58 53

reports taliban continued security

53 50 50 49

174

Using what we learned earlier, we could make a bar plot of the results.

library(tibble)

x <- sort(topfeatures(dfmat, n=10), decreasing=T)

tmp <- tibble(

label = factor(names(x), levels=names(x)),

y=x)

g <- ggplot(data=tmp, aes(x=label, y=y))

g + geom_bar(stat="identity") + xlab("") +

theme_bw() + ylab("# Mentions") +

here, we can turn the axis tick-mark

labels to 45 degrees to prevent

overplotting.

theme(axis.text.x =

element_text(angle = 45, hjust = 1))

0

30

60

90

120

law

go
ve

rn
m

en
t

re
po

rte
d

wom
en

ch
ild

re
n

ca
se

s

re
po

rts

ta
lib

an

co
nt

inu
ed

se
cu

rit
y

M

en
tio

ns

One of the nice things about the quanteda package is that it includes both supervised (e.g.,
naive bayes classification, word scores) and unsupervised (e.g., wordfish) that can be applied to
text. We could go into this a bit more if you want, but I’ll leave it there for now.

If we wanted to bring in all of the country reports,

16.3 Loops

The ultimate in flexibility in repeated calculations is a loop. Loops will work in all cases where
apply works and in some cases where it doesn’t. You will often times hear about what massive
speed increases are to be reaped from using apply instead of a loop. While this can certainly be
true, it is not necessarily true. There are instances where apply is actually slower than a loop.
I don’t have a particularly good feel for when one will be faster than the other, but so far as I
can tell from my experience, when the function is manipulating a lot of data, meaning that a
lot has to be stored in memory, then loops might actually be faster.

175

The for loop is a very useful tool when dealing with aggregating over units or performing
operations multiple times either on the same set of data or on different sets of data. To show
the basic structure of a loop, consider the following example:

n <- c("one", "two", "three", "four")

for(i in 1:4){
print the ith value of the

n-vector of words.

print(n[i])

}

[1] "one"

[1] "two"

[1] "three"

[1] "four"

Here, the solitary character i holds the place for the numbers 1, 2, 3, and 4 in turn. It would
be equivalent to do the following:

n[1]

[1] "one"

n[2]

[1] "two"

n[3]

[1] "three"

n[4]

[1] "four"

Though you often see i used as an index, you could perform the same task with:

for(fred in 1:4){
print(n[fred])

}

[1] "one"

[1] "two"

[1] "three"

[1] "four"

There is another loop structure called while which will iterate until a predefined condition is
met. The for loop is best when the number of iterations is know (i.e., you want to do something
exactly n times) and while is best when you need to converge on a solution. For example, let’s
say we wanted to know how long it would take us drawing random poisson variates (with mean
3) such that the sum of draws was at least 100.

176

i <- 0

sumpois <- 0

while(sumpois < 100){
increment the counter

i <- i+1

add a random poisson(3) draw to the

previous sumpois objet

sumpois <- sumpois + rpois(1, 3)

}
i

[1] 38

If we did the above while loop over and over again, we would find different answers. So, to
be as efficient as possible, we want to only go as far as we need to.

16.3.1 Example: Permutation Test of Significance for Cramer’s V.

A more practical (and certainly useful) application of the loop is in simulation. Let’s say that
you had a cross-tabulation (in this case, of nation and sector from the Ornstein data) and we
want to calculate Cramer’s V and figure out whether it is significant. Perhaps we don’t know
the sampling distribution of V. We could use a permutation test to figure it out. What we
want to do is to keep nation as it is and randomly assign values of sector, so that we know
there is independence between the two variables. Then we calculate V and save it. We repeat
this process many times. Then we can see where our observed statistic falls in this sampling
distribution we are making.

library(vcd)

x <- Ornstein$sector

y <- Ornstein$nation

res <- rep(NA, 2000)

for(i in 1:2000){
make a temporary x value that is

our original x-values randomly

rearranged.

tmpX <- sample(x, length(x),replace=F)

find the cramer's v from the

original y and the reordered x;

store the result in the ith value of res

res[i] <- assocstats(table(tmpX, y))$cramer

}
mean(res > assocstats(table(x,y))$cramer)

[1] 0

Or, we could make a graph:

plot(density(res), xlim=range(c(res, assocstats(table(x,y))$cramer)))

abline(v=assocstats(table(x,y))$cramer, lty=3)

177

0.15 0.20 0.25 0.30

0
5

10
15

density.default(x = res)

N = 2000 Bandwidth = 0.004874

D
en

si
ty

16.4 Loops Example: Web Spidering

One of the things you might want to be able to do is find and follow links. We can find all of
the links in a particular page as follows:

h1 <- read_html("https://www.state.gov/reports/2018-country-reports-on-human-rights-practices")

links <- html_nodes(h1, xpath = "//option[starts-with(@value, 'https://www.state.gov/reports/2018-country-reports-on-human-rights-practices')]") %>% html_attr("value")

countries <- html_nodes(h1, xpath = "//option[starts-with(@value, 'https://www.state.gov/reports/2018-country-reports-on-human-rights-practices')]") %>% html_text

The next step is to loop through all of the links and get the text from their pages. We can
use the same functions that we used above to grab the text.

texts <- list()

for(i in 1:length(links)){

read in the url in the ith link

h1 <- read_html(links[i])

pull the text from the <div> that has a class that starts with 'report_content'

texts[[i]] <- html_node(h1, xpath = "//div[starts-with(@class, 'report__content')]") %>% html_text

}
names(texts) <- countries

The next thing we need to do is to create the document feature matrix. To do this, we need
to change the list of texts to a vector of texts. Then, we can use the dfm function to process
the data

178

texts <- do.call("c", texts)

library(quanteda)

dfmat <- dfm(texts,

tolower=TRUE, remove=stopwords(),

remove_numbers=TRUE, remove_punct=TRUE,

remove_symbols=TRUE, ngrams=1)

After this, you could move on to whatever other analysis you wanted.

16.5 If-then Statements

There are two ways to do if-then statements - the ifelse function and two separate statements
if() and else. The ifelse is a vectorized function, so it operates on a vector. Here’s a simple
example:

x <- c(1, 2, 3,4,5)

ifelse(x < 3, 0, 1)

[1] 0 0 1 1 1

There are three arguments to ifelse, The first is an expression that is evaluated. The second
argument is the value to return if the expression evaluates to TRUE and the third argument is
what to return if the statement if FALSE. You can also use the variable in the expression:

x <- c(1, 2, 3,4,5)

ifelse(x < 3, 0, x)

[1] 0 0 3 4 5

This only works if you’re what you want to do is return a scalar (a single value) for each value
of the original value. If you want to do something more complicated, you can use separate if()

and else statements (though, you don’t always have to use an else if you use an if). For
example, imagine that we wanted to find out if an observation is missing and if it is, we want
to fill it in with a random draw from “similar observations”.

library(car)

tmp <- Duncan[,c("income", "type")]

tmp$income[c(3,40)] <- NA

tmp$income_imp <- tmp$income

for(i in 1:nrow(tmp)){
evaluate whether the ith value of

tmp£income is missing

if(is.na(tmp$income[i])){
if it is missing, fill in

the ith value of tmp£income_imp

with a randomly drawn value using

sample.

tmp$income_imp[i] <- sample(

the values you're sampling are

179

the valid values of income from

occupations with the same type.

na.omit(tmp$income[which(tmp$type == tmp$type[i])]), 1)

close the if loop

}
open the else loop

else{
here, the else loop is blank because we

don't want to do anything if the ith value

of tmp£income isn't missing. We could just

as easily omitted the else block altogether.

close the else block

}
}

Notice that the else condition is blank. We could just have easily (in fact more easily) have
just left out the else condition and it would be equivalent.

17 Repeated Calculations

Here, we’re going to talk about doing lots of calculations at once. These operations can range
from quite simple to quite complicated. In fact, we’ll generally be talking about executing some
function multiple times.

17.1 apply and its relatives

The apply function performs a function for some margin of a matrix (or array). The command
is as follows:

apply(data, margin, function)

Where data is the matrix, margin is 1 for rows and 2 for columns and function is some function
that is either defined within the command or some function that is defined elsewhere that is
called in the function. I’ll show a couple of examples below.

set.seed(10)

mat <- matrix(runif(25,1,5), ncol=5)

colmeans <- apply(mat, 2, mean)

colmeans

[1] 2.615514 2.454218 2.829502 2.583852 3.413282

rowmeans <- apply(mat, 1, mean)

rowmeans

[1] 3.142481 2.453034 2.481607 3.127373 2.691873

Notice that this is much faster than specifying a loop over the five columns. You can read the
second line above as

180

• We want to apply the function mean to the columns (margin = 2) to the matrix mat.

The fourth line can be read similarly, though the margin changes to 1, so we are applying the
function to the rows instead of the columns.

What if there are some missing values in the matrix? If this happens, the mean function
will return NA for the row or column that contains the missing value unless na.rm=T is offered
as an argument to the command mean. You can do this in apply. The additional arguments
come after the function name. For example:

colmeans <- apply(mat, 2, mean, na.rm=T)

rowmeans <- apply(mat, 1, mean, na.rm=T)

Equivalently, this could be done with:

colmeans <- apply(mat, 2, function(z)mean(z))

colmeans

[1] 2.615514 2.454218 2.829502 2.583852 3.413282

rowmeans <- apply(mat, 1, function(z)mean(z))

rowmeans

[1] 3.142481 2.453034 2.481607 3.127373 2.691873

These exampled are a bit contrived because there are functions called colMeans and rowMeans

that do the same. However, replacing mean with median would grab the column or row medians.
This can also be any function that returns a vector.

library(car)

apply(Duncan[,c("income", "education", "prestige")],

2, quantile, c(.25,.5, .75), na.rm=T)

income education prestige

25% 21 26 16

50% 42 45 41

75% 64 84 81

17.1.1 by

The by command is very flexible about both input data and about what kind of objects get
returned. The by command can take a a matrix or data frame as its first argument. As suggested
above, by returns a list rather than a data frame, but I’ll show you below how we can change
it back to a matrix.

by1 <- by(Duncan$education, list(Duncan$type), mean)

by1

181

: prof

[1] 81.33333

--

: bc

[1] 25.33333

--

: wc

[1] 61.5

We can make this into a vector simply by typing:

by1.vec <- c(by1)

by1.vec

prof bc wc

81.33333 25.33333 61.50000

One of the benefits of the by command is it allows you to provide a matrix as the first
argument to the command and allows the function to perform matrix operations. One simple
thing we might want to do is take the mean of three columns of a matrix for the values of
another variable. Specifically, we might want to know the means of prestige, education and
income for the values of type in the Duncan dataset.

by2 <- by(Duncan[,c("prestige", "income", "education")],

list(Duncan$type),

function(x)apply(x, 2, mean))

by2

: prof

prestige income education

80.44444 60.05556 81.33333

--

: bc

prestige income education

22.76190 23.76190 25.33333

--

: wc

prestige income education

36.66667 50.66667 61.50000

Now, what if we want this to be a 3× 3 matrix?

mat <- do.call(rbind, by2)

mat

prestige income education

prof 80.44444 60.05556 81.33333

bc 22.76190 23.76190 25.33333

wc 36.66667 50.66667 61.50000

182

We could also do something more complicated, like estimate a linear model for all of the
different values of a categorical variable.

mods <- by(Duncan, list(Duncan$type),

function(x)lm(prestige ~ income + education, data=x))

mods

: prof

##

Call:

lm(formula = prestige ~ income + education, data = x)

##

Coefficients:

(Intercept) income education

28.0573 0.4143 0.3382

##

--

: bc

##

Call:

lm(formula = prestige ~ income + education, data = x)

##

Coefficients:

(Intercept) income education

-3.9505 0.7834 0.3196

##

--

: wc

##

Call:

lm(formula = prestige ~ income + education, data = x)

##

Coefficients:

(Intercept) income education

-10.9937 0.4231 0.4264

summary(mods[[1]])

##

Call:

lm(formula = prestige ~ income + education, data = x)

##

Residuals:

Min 1Q Median 3Q Max

-15.338 -5.216 -0.416 5.920 21.833

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

183

(Intercept) 28.0573 12.9430 2.168 0.0467 *

income 0.4143 0.1637 2.530 0.0231 *

education 0.3382 0.1590 2.127 0.0504 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 10.1 on 15 degrees of freedom

Multiple R-squared: 0.5478,Adjusted R-squared: 0.4875

F-statistic: 9.086 on 2 and 15 DF, p-value: 0.002599

17.1.2 List Apply Functions

There are two different apply functions that operate on lists. They are essentially the same
function, but differ in the nature of the output. The lapply function executes a specified
function on every element of the input list and it always returns a list, regardless of the simplicity
of the output. The sapply function does similar things as lapply, but returns the simplest
possible data structure. For example, if it can return a matrix instead of a list, it will. See
below.

lapply(mods, coef)

$prof

(Intercept) income education

28.0572630 0.4142683 0.3382139

##

$bc

(Intercept) income education

-3.9505429 0.7834109 0.3196229

##

$wc

(Intercept) income education

-10.9937457 0.4231025 0.4263938

sapply(mods, coef)

prof bc wc

(Intercept) 28.0572630 -3.9505429 -10.9937457

income 0.4142683 0.7834109 0.4231025

education 0.3382139 0.3196229 0.4263938

18 Basic Function Writing

There are a few different situations in which we might want to write our own functions. First,
we might want to be able to execute multiple commands with a single command. Second, we
might want to use R’s ability to do repeated calculations with apply, by or for to do something
many times with a single command. Finally, we might want to make complicated graphs with
the lattice package which will require writing a function.

184

The function function() in R is what you need to write functions. The most important
thing when writing a function is that you know what you want R to do. The very basic structure
of a function is

myfun <- function(x){

do something to/with/using x

}

Not surprisingly, it’s the do something part that you need to come up with. We will start out
with some relatively simple examples, but these can get arbitrarily complicated.

18.1 Example: Calculating a Mean

To give a simple example, let’s think about making a function that calculates the mean (not
that we need to, but just because we can). We need to get the sum of a variable and the number
of observations in the variable to make the mean

mymean <- function(x){
calculate the sum

sum.x <- sum(x, na.rm=T)

find the N by counting up all of the non-missing entries

n.x <- sum(!is.na(x))

calculate the mean as the sum divided by n

mean.x <- sum.x/n.x

print the mean

mean.x

}

Notice here, that we are making the function take a single argument x. Whenever x shows
up in the “guts” of the function, it will stand in for the variable whose mean we are trying to
calculate.

z <- 1:6

mymean(z)

[1] 3.5

mean(z)

[1] 3.5

18.2 Changing Existing Function Defaults

You might want to know if you can make a function that sets parameters of another function so
we don’t have to. Let’s take, for instance, the CrossTable function from the gmodels package.
Let’s say that we only want column percentages and cell counts along with the chi-squared
statistic and it’s p-value. If we look at the help file for the CrossTable command, we can see
what arguments we need to set.

185

CrossTable(x, y, digits=3, max.width = 5, expected=FALSE, prop.r=TRUE,

prop.c=TRUE, prop.t=TRUE, prop.chisq=TRUE, chisq = FALSE,

fisher=FALSE, mcnemar=FALSE, resid=FALSE, sresid=FALSE,

asresid=FALSE, missing.include=FALSE,format=c("SAS","SPSS"),

dnn = NULL, ...)

Notice here, we will probably want to change some of the options that are TRUE by default to
FALSE.

In R, the defaults are set with the equal sign (=) in the command. For example in the
CrossTable command, x and y have no defaults. That is to say, the command will not substitute
a value for you if you do not provide arguments x and y. However, if you do not specify the
digits argument, it defaults to 3. The argument prop.r defaults to TRUE, but we want to set
it to FALSE.

CrossTable2 <- function(x,y){
require("gmodels")

CrossTable(x=x,y=y, prop.r=F, prop.t=F, prop.chisq=F,chisq=T,

format="SPSS")

}

If we run the command now, we can see the results:

library(car)

data(Duncan)

Duncan$ed.cat <- cut(Duncan$education, 2)

CrossTable2(Duncan$ed.cat, Duncan$type)

##

Cell Contents

|-------------------------|

| Count |

| Column Percent |

|-------------------------|

##

Total Observations in Table: 45

##

| y

x | bc | prof | wc | Row Total |

-------------|-----------|-----------|-----------|-----------|

(6.91,53.5] | 21 | 2 | 2 | 25 |

| 100.000% | 11.111% | 33.333% | |

-------------|-----------|-----------|-----------|-----------|

(53.5,100] | 0 | 16 | 4 | 20 |

| 0.000% | 88.889% | 66.667% | |

-------------|-----------|-----------|-----------|-----------|

Column Total | 21 | 18 | 6 | 45 |

| 46.667% | 40.000% | 13.333% | |

-------------|-----------|-----------|-----------|-----------|

##

##

Statistics for All Table Factors

##

##

Pearson's Chi-squared test

--

Chi^2 = 32.4 d.f. = 2 p = 9.213601e-08

##

##

##

Minimum expected frequency: 2.666667

Cells with Expected Frequency < 5: 2 of 6 (33.33333%)

186

You can see that we’ve controlled the output and presented exactly what we wanted. Notice
that we’ve simply included x and y as arguments and we pass them to the original command.
It’s a bit more explicit what is going on if we do the following:

There are two other pieces of this command.

• require('gmodels') - does the following. If the gmodels library is loaded, then it does
nothing. If it is not loaded, it loads it.

• print(xt) prints the object that was created on the previous line.

18.3 .First and .Last functions in R.

Some people have asked how they can get R to load packages that they use frequently automat-
ically on start. This is pretty easy, but requires a tiny little bit of programming. First you need
to have a file in your home directory (or whatever directory R starts in)7 The file’s name should
be .RProfile. Notice, that nothing comes before the extention; the file name starts with a dot.
In that file, you can set preferences and generally tell R how you want it to be initialized when
it opens. There are two functions you can use in the .RProfile file called .First and .Last

which tell R what to do when you open R initially and close R, respectively.
Let’s say that I wanted to load the foreign package every time I started R. My .RProfile

function would look something like this:

.First <- function(){
load a package; you could also do

this with the defaultPackages option.

library(foreign)

set the working directory automatically

Bdir <- "C:/Users/armstrod/Dropbox/IntroR/Boulder/"

}

You could also set options like default paper size, use of fancy quotation marks, etc..., but
you don’t have to do that. The .RProfile file can be as long or short as you want. The .Last

function is specified in exactly the same way, but it executes automatically on closing, rather
than opening, R.

7You can find this information by opening R and immediately typing getwd(); this will tell you where
the home directory is.

187

	The Basics
	Getting R
	Using R
	Assigning Output to Objects
	Reading in your Data
	SPSS
	Function, Syntax and Arguments
	Stata
	Excel
	Data Types in R
	Examining Data
	Saving & Writing
	Where does R store things?

	Writing
	Saving
	Recoding and Adding New Variables
	Missing Data
	Filtering with Logical Expressions and Sorting
	Sorting
	Summarising by Groups

	Merging Datasets
	Statistics
	Cross-tabulations and Categorical Measures of Association
	Measures of Association

	Continuous-Categorical Measures of Association
	Linear Models
	Adjusting the base category
	Model Diagnostics
	Predict after lm
	Linear Hypothesis Tests
	Factors and Interactions
	Non-linearity: Transformations and Polynomials
	Testing Between Models

	GLMs and the Like
	Binary DV Models

	Ordinal DV Models
	Multinomial DV
	Survival Models
	Multilevel Models
	Factor Analysis and SEM

	Miscellaneous Statistical Stuff
	Heteroskedasticity Robust Standard Errors
	Clustered Standard Errors
	Weighting

	Finding Packages on CRAN
	Warnings and Errors
	Troubleshooting
	Help!
	Books
	Web

	Brief Primer on Good Graphics
	Graphical Perception
	Advice

	Graphics Philosophies
	The Plot Function
	getting familiar with the function
	Default Plotting Methods
	Controlling the Plotting Region
	Example of Building a Scatterplot
	Adding a Legend
	Adding a Regression Line
	Identifying Points in the Plot

	Other Plots

	ggplots
	Scatterplot
	Bar Graph

	Other Plots
	Histograms and Barplots
	Dotplot

	Faceting
	Bringing Lots of Elements Together

	Maps
	Reproducibility and Tables from R to Other Software
	Reproducible Research
	Web Sites to Data
	Importing HTML Tables
	Scraping Websites for Content
	Text (Pre-)Processing

	Loops
	Example: Permutation Test of Significance for Cramer's V.

	Loops Example: Web Spidering
	If-then Statements

	Repeated Calculations
	apply and its relatives
	by
	List Apply Functions

	Basic Function Writing
	Example: Calculating a Mean
	Changing Existing Function Defaults
	.First and .Last functions in R.

