
Introduction to R: Text Mining/Analysis

Dave Armstrong
University of Wisconsin-Milwaukee

Department of Political Science

e: armstrod@uwm.edu
w: www.quantoid.net/UWMDataDay.html

This workshop will require us to use a lot more code than the last workshop. There is
no GUI that is aimed at text mining/analysis. Further, we will need to know something
about not only R, but also html/CSS. We’ll look at some examples as we go along. First,
we’ll learn how to use some useful tools.

Regular Expressions

Regular expressions are essentially search patterns used for finding and ex-
tracting specific text from within strings.

This is not a full workshop on regular expressions, but a short introduction will help
clarify the uses of the tool and will prepare us for learning to scrape the web. For this
short piece of instruction, we will use the website http://regex101.com. This is a place
where you can test out your regular expressions. We will work with the first sentence
from the Gettysburg Address to test out some of the main ideas.

• [a-z] matches lowercase letters

• [A-Z] matches uppercase letters

• [0-9] matches the digits (a shortcut for this is \d, \D matches everything but a
digit character).

• + allows for multiple instances of the preceding character(s). For example \d+ will
match any number of digits in a row. * allows for multiple matches (but includes
the possibility of zero)

• . matches nearly any character (it does match white space, letters, digits, it does
not match line break characters).

• {n,m} finds any match of the preceding character between n and m characters long.

• \s is a white space character and \S is anything but a white space character.

1

• \w is a word character and \W is anything but a word character. Similarly, \b is a
word boundary (i.e., something that separates words).

Here is the text we’re looking at:

Abraham Lincoln

November 19, 1863

Four score and seven years ago our fathers brought forth on this continent, a new nation,

conceived in Liberty, and dedicated to the proposition that all men are created equal.

If we were looking for the presence of a single word, it would be easy enough. For
example, if we wanted to know if the word created was included, we could do:

Ultimately, that’s not particularly interesting because we could do that lots of other
easier ways, too. Regular expressions, for our purposes are good for extracting words.
For instance, lets say we wanted to find all of the numbers.

2

We could do this in R with:

> library(stringr)

> # makes an object called "x" with the relevant text

> source("http://www.quantoid.net/DD/ga.R")

> str_extract_all(x, "\\d+")

[[1]]

[1] "19" "1863"

3

If we only wanted to extract the year,

> str_extract_all(x, "\\d{4}")

[[1]]

[1] "1863"

If we wanted to extract all of the five-letter words:

> str_extract_all(x, "\\b\\w{5}\\b")

[[1]]

[1] "score" "seven" "years" "forth" "equal"

4

Finally, at least for now, if we wanted to find all of the words starting with f.

> str_extract_all(x, "\\bf\\w+\\b")

[[1]]

[1] "fathers" "forth"

Note that this didn’t catch Four because it starts with F and not f. There are two
ways to fix that:

> str_extract_all(x, "\\b[fF]\\w+\\b")

[[1]]

[1] "Four" "fathers" "forth"

> str_extract_all(tolower(x), "\\bf\\w+\\b")

[[1]]

[1] "four" "fathers" "forth"

The string [fF] will match either f or F. The second option converts all letters to
lowercase and then matches, so it changes Four to four and then matches the f at the
beginning of four.

With these ideas in mind, let’s consider a couple of different use cases.

5

Scraping Album Reviews from Pitchfork

This particular use case might not be so “social sciency,” but it will identify a few
relevant features. The first thing we want to do is extract links from the page with all of
the reviews and then go to the linked pages to get the review information.

HTML/CSS code

The first thing we need to know is that links are embedded in an <a, href=...>

tag. So, if we look at a subset of the code for the review page, it looks like the following
(you can see this in Chrome by going to View → Developer → Source Code):

To get the code into R and deal with it, we need to load two packages: rvest and
stringr.

> library(rvest)

> library(stringr)

> page <- html("http://pitchfork.com/reviews/albums/")

6

The page is not something pretty to look at, but we don’t need to look at it. We just
want to extract the html tags.

> links <- html_nodes(page, "a")

> links <- html_attr(links, "href")

This does extract all of the links, but if you look at the list (truncated in the interest
of space), there are links that relate to reviews and those that relate to other things:

> links[c(1:5, 201:205)]

[1] "http://thedissolve.com"

[2] "http://pitchfork.com"

[3] "/"

[4] "http://twitter.com/#!/pitchfork"

[5] "http://www.facebook.com/Pitchfork"

[6] "/reviews/albums/20456-jeremiah-jae-lorange-the-night-took-us-in-like-family/"

[7] "/reviews/albums/20514-beauty-pill-beauty-pill-describes-things-as-they-are/"

[8] "/reviews/albums/20498-your-good-fortune-ep/"

[9] "/reviews/albums/20420-sound-color/"

[10] "/reviews/albums/20530-new/"

We want only the links starting with /reviews. We can find out which ones these are by
using the str_detect function from stringr.

> revlinks <- which(str_detect(links, "\\/reviews"))

> revlinks[1:10]

[1] 17 18 31 32 33 199 200 201 202 203

> links <- links[revlinks]

This returns the observation numbers (with which) where the string is detected (with
str_detect). This is better, but still not perfect. There are some links that are not
album reviews, but links to other sections of the webpage, but still under the “reviews”
sub-head. What you will notice is that the reviews links include a five-digit number.

> links[1:10]

[1] "/reviews/albums/"

[2] "/reviews/tracks/"

[3] "/reviews/best/albums/"

[4] "/reviews/best/tracks/"

[5] "/reviews/best/reissues/"

[6] "/reviews/albums/20529-young-thug-barter-6/"

[7] "/reviews/albums/20408-sheer-mag-ii-ep/"

[8] "/reviews/albums/20456-jeremiah-jae-lorange-the-night-took-us-in-like-family/"

[9] "/reviews/albums/20514-beauty-pill-beauty-pill-describes-things-as-they-are/"

[10] "/reviews/albums/20498-your-good-fortune-ep/"

Let’s pull out the links with five-digit numbers in them.

> ind <- which(str_detect(links, "\\d{5}"))

> links <- links[ind]

> links[1:10]

7

[1] "/reviews/albums/20529-young-thug-barter-6/"

[2] "/reviews/albums/20408-sheer-mag-ii-ep/"

[3] "/reviews/albums/20456-jeremiah-jae-lorange-the-night-took-us-in-like-family/"

[4] "/reviews/albums/20514-beauty-pill-beauty-pill-describes-things-as-they-are/"

[5] "/reviews/albums/20498-your-good-fortune-ep/"

[6] "/reviews/albums/20420-sound-color/"

[7] "/reviews/albums/20530-new/"

[8] "/reviews/albums/20523-makes-a-king/"

[9] "/reviews/albums/20528-the-float/"

[10] "/reviews/albums/20496-transient/"

Now, we have the links to follow, we can set up a loop to go through the links and
extract whatever information we want. The question is - how do we get at the relevant
information? One easy way to do this is with http://selectorgadget.com/. This will
show you the CSS selectors (things like divs, paragraphs, spans, etc...) that are relevant
for the required text.

We see that the score, which we want, is in a span tag. Specifically, the code looks
like this:

 7.9

We could find all of the nodes and pull them out.

> ses <- html_session("http://pitchfork.com/reviews/albums/")

> l <- links[str_detect(links, "foil-deer")]

> tmp.rev <- jump_to(ses, l)

> scores <- html_nodes(tmp.rev, "span") %>% html_text()

> scores[15:20]

[1] " | "

[2] "Ian Cohen finds out how the mastermind behind Chromatics and Glass Candy perfectedÂă"

[3] "April 20, 2015"

[4] " 7.9 "

[5] " Speedy Ortiz: \"Raising The Skate\" (via SoundCloud) \n"

[6] ""

8

Notice that there are lots of elements in here. There are two ways we could get the score.

• Find the entries with one or two digits and then a third digit, with a period between
the first two.

> id <- which(str_detect(scores, "\\d{1,2}\\.\\d{1}"))

> scores[id]

[1] " 7.9 "

• Use a more targeted selector.

> score <- html_text(html_node(tmp.rev, xpath="//span[starts-with(@class, 'score')]"))
> str_trim(score)

[1] "7.9"

OK, now that we know how to grab the scores, how do we get the artist, album title
and review? Let’s start with the artist. Here is one place where the artist shows up.

<h1>Speedy Ortiz</h1>

Just like above, if we grab everything inside the <h1> tag, we will get many results. So
we need a more targeted search. We are looking for links inside an <h1> tag and those
where the link itself starts with /artists/. With a bit of trial and error, we recognize
that the review and relevant details are all in the <div id='main'> tag. The only link
inside a h1 tag is the artist. We can get this with:

> artist <- html_nodes(tmp.rev, xpath="//div[starts-with(@id, 'main')] //h1 //a")

> artist <- html_text(artist)

> artist

[1] "Speedy Ortiz"

We can get the album with a similarly targeted search, though here the h2 tag holds
the album title.

<h2>Foil Deer</h2>

> album <- html_nodes(tmp.rev, xpath="//div[starts-with(@id, 'main')] //h2")

> album <- html_text(album)

> album

[1] "Foil Deer"

Now, we just have to capture the text of the review. Again, we can do this with a targeted
search for a div of class editorial

> review <- html_nodes(tmp.rev,

+ xpath="//div[starts-with(@id, 'main')] //div[starts-with(@class, 'editorial')]")
> review <- html_text(review)

> substr(review, 1, 50)

[1] " OnÂăSpeedy OrtizâĂŹs 2013 debutÂăMajor Arcana,ÂăSadie "

Now we need to put it all together. We need to consider a couple of other tools here.
We need to know how to store the data and how to loop over values of a vector. Let’s
take the second one first.

9

Looping

The for loop is a very useful tool when dealing with aggregating over units or performing
operations multiple times either on the same set of data or on different sets of data. To
show the basic structure of a loop, consider the following example:

> n <- c("one", "two", "three", "four")

> for(i in 1:4){

+ print(n[i])

+ }

[1] "one"

[1] "two"

[1] "three"

[1] "four"

Here, the solitary character i holds the place for the numbers 1, 2, 3, and 4 in turn. It
would be equivalent to do the following:

> n[1]

[1] "one"

> n[2]

[1] "two"

> n[3]

[1] "three"

> n[4]

[1] "four"

Though you often see i used as an index, you could perform the same task with:

> for(fred in 1:4){

+ print(n[fred])

+ }

[1] "one"

[1] "two"

[1] "three"

[1] "four"

Often times, when doing many tasks, we loop over a sequence of integer values from
1 to the number of times we want to do something. You could also loop over any set of
values:

> for(i in c("one", "two", "three")){

+ print(i)

+ }

[1] "one"

[1] "two"

[1] "three"

10

Storing Data

As I mentioned on the first day, a rectangular dataset is only one of the ways R can store
data. While it has many nice properties, a rectangular array is not necessarily what we
want here. An entry in a variable is probably not the best way to store the information
from the review. Here, we will use a list, which is simply a collection of elements of any
kind. We will put the album, artist and score in a vector and store that information.
We will also put the review as an element of the list. The whole function would look as
follows:

> # initialize the result

> result <- list()

> # loop over links

> for(i in 1:length(links)){

+ # jump to the link from the main page

+ tmp.rev <- jump_to(ses, links[i])

+ # find the score

+ score <- html_text(html_node(tmp.rev, xpath="//span[starts-with(@class, 'score')]"))
+ score <- str_trim(score)

+ # find and capture the artist

+ artist <- html_node(tmp.rev, xpath="//div[starts-with(@id, 'main')] //h1 //a")

+ artist <- html_text(artist)

+ # find and capture the album

+ album <- html_node(tmp.rev, xpath="//div[starts-with(@id, 'main')] //h2")

+ album <- html_text(album)

+ # find and capture the review

+ review <- html_nodes(tmp.rev,

+ xpath="//div[starts-with(@id, 'main')] //div[starts-with(@class, 'editorial')]")
+ review <- html_text(review)

+ # organize artist, album, score info into a vector

+ s <- c(artist=artist, album=album, score=score)

+ # save all scraped data into an element of the result list

+ result[[i]] <- list(info = s, review=review)

+ }

We could look at all of the score data with.

> res <- t(sapply(result, function(x)x$info))

> head(res)

artist album score

[1,] "Young Thug" "Barter 6" "8.4"

[2,] "Sheer Mag" "II EP" "8.1"

[3,] "Jeremiah Jae" "The Night Took Us in Like Family" "7.1"

[4,] "Beauty Pill" "Beauty Pill Describes Things As They Are" "7.5"

[5,] "Mavis Staples" "Your Good Fortune EP" "6.8"

[6,] "Alabama Shakes" "Sound & Color" "8.1"

Analyzing the Text

If we wanted to do some quantitative analysis on the text, we would first need to clean the
text and organize it in a way that R can use. For this we need the tm and plyr packages.
We are also going to grab some more reviews, too. Rather than do this in class, I’ve

11

downloaded them in the same fashion and compiled an object of the same format that
you can download from the website (http://www.quantoid.net/DD/pitchfork2k.rda).
Then, you can just load the file in R. The object will be called p2k.

> setwd("~/Dropbox/IntroR/UWM/Day3/")

> load("pitchfork2k.rda")

> revs <- sapply(p2k, function(x)x$review)

Next we need to let R know that all of these reviews belong to a corpus of material that
we will want to analyze. The tm package is designed to deal with these sorts of sources.

> library(tm)

> library(plyr)

> corp <- Corpus(VectorSource(revs))

> corp <- tm_map(corp, tolower)

> corp <- tm_map(corp, removePunctuation)

> corp <- tm_map(corp, removeNumbers)

> corp <- tm_map(corp, removeWords, stopwords('english'))
> corp <- tm_map(corp, stripWhitespace)

> corp <- tm_map(corp, PlainTextDocument)

> corp <- tm_map(corp, stemDocument, language="english")

> tdm <- TermDocumentMatrix(corp)

Now, the object tdm is a term document matrix which has 51325 rows, each one cor-
responding to a different stemmed term in the document and 2000 columns, each one
corresponding to an album review. The next thing we could do is take out some of the
sparse terms, in an effort to find a core set of words that might help categorize the albums.

> tmp <- removeSparseTerms(tdm, .75)

> tmp <- t(tmp)

> score <- as.numeric(sapply(p2k, function(x)x$info)[3,])

> len <- sapply(corp, nchar)[1,]

> tmp <- cbind(length=len, score=score, as.matrix(tmp))

> tmpdf <- as.data.frame(tmp)

At this point, you could save the tmpdf object and load it into Deducer to investigate
graphically. Ultimately, however, what we’ll want for many of the things we might do is
a total count of how often different words are used across documents.

> ags <- colSums(tmp[,-c(1,2)])

> agdf <- data.frame(count=ags, word=names(ags))

Now, we could make a bar plot of the most frequent words.

> library(ggplot2)

> agdf <- agdf[order(agdf[,1], decreasing=T),]

> agdf$wnum <- 1:nrow(agdf)

> agdf$wnum <- factor(agdf$wnum, labels=rownames(agdf))

> ggplot() + geom_bar(aes(x = word,y = count),data=agdf[1:10,],stat = 'identity') +

+ theme(axis.text.x = element_text(angle = 90, hjust = 1))

12

0

2000

4000

6000

8000

al
bu

m

ba
nd lik

e

m
ak

e

m
us

ic

on
e

re
co

rd

so
ng

so
un

d

tr
ac

k

word

co
un

t

Next, we could make a Word Cloud:

> library(wordcloud)

> wordcloud(agdf$word, agdf$count)

he
sfollow

never

can ha
rd

titl alway
that

singlturn

seem

lead

still

fo
rm

long

least

to
w

ar
d

get

ke
ep

pop

group

ba
nd

actual

also
without

effect

melodi
clear

close
made

decad

part

instead
doesnt

song
bit

look

music
yet

earli

rock
new

almost

might
start

theyr

now

last

find

feel

di
ffe

r

track

space
right

past

let

minut

co
lle

ctlyric

thereplay

often

dont

world

po
in

t

give

sing
ever

like
set

move

an
ot

h

approach

name

cut

want

tri

less

beat

use ol
d

re
le

as

end

best

take
good

project

enough

comething

justline

around

though

se
co

nd

see

handvoic

one

togeth

album

place

kind

vocal

becom

solo
isnt

sens

make

better

w
or

d

rather day
cover

record

time

listen

love

produc

w
or

k

similar

know

much

way

pe
rs

on

littl

hear

three

farpeopl light

mani

even
realli

recent

everi

idea

live

pr
od

uc
t

sinc

will

m
ay

lif
e

first

artist

someth

drum

debut

away

synth

show

open

sound
two

guitar

instrument

say

back

power

moment

put

wellyear

call

What if we wanted a word cloud based on score.

> q <- quantile(tmpdf$score, c(0,.25,.5,.75,1))

> score_cat <- cut(tmpdf$score, breaks=q)

> ag2 <- by(tmp[,-c(1,2)], list(score_cat), colSums)

> ag2 <- do.call(cbind, ag2)

> wordcloud(rownames(ag2), ag2[,1])

> wordcloud(rownames(ag2), ag2[,2])

> wordcloud(rownames(ag2), ag2[,3])

> wordcloud(rownames(ag2), ag2[,4])

13

Figure 1: wordclouds by score

thing

in
st

ru
m

en
tmake

effect
givewell

say

album

fe
el

can
ra

th
er

year

place
pop

clear

old

actual

keep

band

person

collect

in
st

ea
d

mani

song

sy
nt

h

record
guitar

idea

without

anoth

evenlittl

cover

voic
form

enough

yet
lyric

sing
newvocal

earli

decad

show

name

also
let

he
s

isnt

set

point

close

last

tu
rn

produc
getartist

us
e

theyr

debut

ever

track

approach

want

often

doesnt

line

solo

see

less

two

put

part

m
in

ut

mightgr
ou

p

much
never

ba
ck

moment

take

second

toward

m
us

ic

almost

titl

en
d

first

word

project

sound

will

call

lead

like

al
w

ay

kind

follow

just

th
re

e

seem

sp
ac

e

releas

there
tri

love

move

aw
ay

product

becom

singl

differ

play

dont

one

sens

far

power

right

work

live

past

light

togeth

hand

go
od

hear

similar

le
as

t

know

melodi

start

hard
worldbetter

may

beat

w
ay

come

re
al

li

open

peopl

recent

everi

around

lo
ok

long

day

life

drum

time

now

best

st
ill

someth

made

fin
d

rock

cut

thoughbit

sinc

that

listen

(a) 1st quartile

day
approach

anothca
ll

use

effect

come

doesnt

isnt

will

made

record

second
may

play

hes
way

time

album

bit

earli
often

sing

can
power

yet
namebest

vo
ic

see

track

life

guitar

al
so

singl

likeyear
word

dont

pop

pr
od

uc

away

debut

clear

never though

toward

re
al

li

rather

let
put

lead
say

less
idea

even

drum

work

instrument
show

pa
rt

know

lo
ng

mani
line

beat

without

peopl
rock

handseem
collect

end

listen

three

project
around

good

almost

person

turn

so
m

et
h

far

there

instead

di
ffe

r

be
tte

r

open

setwant

new vocal

space

least

hard
light

band

live

enough

group to
ge

th

make

decad

actual

place

form

artist

first

sinc

give

songfind

minut

lyric

theyr

much

becom

solo

love
close

feel
everi

moment

recent

now

music

just

that

old

releas

littl

titl

point

synth

start

sound

keep

back

last

melodi

tri

thing

two

world

still

ever
kind

follow
sens

similar

alway

one

cut

m
ov

e

right
take

well

might

cover

product

hear

get

look

pa
st

(b) 2nd quartile

feel
similar

kind

artist
give

past

use

song
also

bi
t

doesnt
live seemspace

se
co

nd

well

sens

instead

never
record

two

vo
ic

minutha
ndeveri

know
first

keep

approach

w
or

d

someth

set

idea

he
ar

made

al
bu

m

almost

line

drum

produc
put

toward

look

lead

follow

lif
e

product

lo
ve

group

just
world

place

one

al
w

ay

open

se
e

m
el

od
i

rig
ht

power

earli

newdiffer

around

th
er

e

releasshow

yet

away

decad
moment

rather
isnt

guitar
cover

though ever

enough

much

fo
rm

even

might

find

least

becom

good

less

make

tri

work
sound

hard

move

pop

da
y

often

time

start

w
ith

ou
t

rock

littl

titl

say

theyr

person

cl
os

e yearcall

effect

peopl

that
collect

get

come

sinc
hes

recent

play

now

ba
nd

long

dont

singl

project

track

back

way

let

last

three

listen

turn

m
ay

can
want

sing

vocal

synth

end

mani

point

take

music

instrument

old

ac
tu

al

part

solo

still

lyric

togeth

will

fa
r

light

thing

best

cut

re
al

li

like

name

clear

better

beat

anoth

debut

(c) 3rd quartile

thing

si
m

ila
r

find

also

listen

even
group

rock
anoth
seem

hard

band
sinc

far
titl

guitar

clear

love
like

realli

becom
move

collect

line

feel
end

second

world

instrument

call

start

work

doesnt

well
earli

see

least

cl
os

e

now

toward

differ

al
w

ay

year right

moment

everi

sens

ba
ck

peopl singl

cover

way

new
past

drum

name

lessdebut

m
ay better

person

le
ad

sound

releas

littl

lyric

togeth
product

take

pop
say

hand

still
rather

almost neverpower

hes

made

last

sing

pa
rt

voic

time

idea

music one
often

form

dont

track

synth

instead

melodi

en
ou

gh

be
at

us
e

day

lif
e

isnt

ever

much

album
lig

ht

tri

artist

record
point

get

project

know place

might

can

open

mani

make

approach

let

th
ou

gh

hear

there

oldlook

give

someth

solo

just

space

minut

vocal

three

will
effect

come

best

that

decad

yet

live

turn

keep

without

kind

set
away

word

actual

song

show

follow

produc

recent

want

around

good

put

theyr

long

two

first

bi
t

cut

play

(d) 4th quartile

We could also do some quantitative analysis. First, we can find associations among
words:

> findAssocs(tdm, "good", .14)

good

waypoint 0.16

get 0.15

just 0.15

hard 0.14

make 0.14

14

namea 0.14

shoebox 0.14

We could also look at a more complicated tree-based regression model for score:

> library(randomForest)

> N <- nrow(tmp)

> train <- sample(1:nrow(tmp), floor(N/2), replace=F)

> test <- (1:nrow(tmp))[-train]

> y <- tmpdf$score

> ranf <- randomForest(y=y[train], x=as.matrix(tmpdf[train, -2]))

> imp <- ranf$importance

> imp <- imp[order(imp, decreasing=T), , drop=F]

> imp[1:15, , drop=F]

IncNodePurity

length 87.03082

music 15.72706

record 14.42008

album 12.97612

space 12.54727

pop 12.38725

new 12.28719

group 12.15389

one 11.83239

least 11.24670

song 11.04606

less 10.66965

even 10.45839

peopl 10.19111

much 10.15339

Twitter

There is a packaged called twitteR that allows you easy access to tweets:

> consumer_key <- 'ahcyHdH0myoDXowxWSgDUW0Bl'
> consumer_secret <- 'JEyZHcZhJY9n32jV7xl5gq8NWVOv34GLF8z63eby0J6V27znmz'
> access_token <- '212334901-piyPsDlFP5sJqD1vdb4Bh0opIJyfytRDzX8dw3rS'
> access_secret <- 'O6SQJOzlUPN6WgZtqsAQKEwd3RFyDZh2cmZh6emzU4lNX'
> #necessary file for Windows

> # download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile="cacert.pem")

>

> library(twitteR)

> setup_twitter_oauth(consumer_key,

+ consumer_secret,

+ access_token,

+ access_secret)

[1] "Using direct authentication"

> #the cainfo parameter is necessary only on Windows

> tweets <- searchTwitter("#UWMvital", n=1500)

> # on Windows

> # tweets <- searchTwitter("#hillary2016", n=1500, cainfo="cacert.pem")

> tweet_text <- sapply(tweets, function(x)x$getText())

15

We could find the most re-tweeted tweet for this hash:

> retweets <- tweet_text[which(str_detect(tweet_text, "^RT"))]

> retweets <- str_replace_all(retweets, "\\@\\w+\\b", "")

> retweets <- str_replace_all(retweets, "http.+\\b", "")

> tab <- table(retweets)

> tab <- tab[order(tab, decreasing=T)]

> t(t(tab))

retweets [,1]

RT : #UWM has a $1.5+ billion impact on WI's economy. Hear from 5 top #Milwaukee voices on what makes #UWMvital: 23

RT : We provide a pathway to success for our great student-athletes #UWMvital #PantherProud 10

RT : #UWM has a $1.5 billion-plus impact on WI. Hear from 5 Milwaukee leaders on what makes #UWMvital. 8

RT : Meet #UWM, a living laboratory of innovation, engaged research & diverse students: 7

RT : Did you know 118,000 live and work in Wisconsin? 6

RT : "Milwaukee would fall on the other side of the tracks without #UWM." - President Tim Sheehy 5

RT : #uwmvital La Table Fran~Ağaise c'est super! The French Table nourishes our minds & bodies! 5

RT : "When we're trying to solve a problem, #UWM is the first place we look." - Daniel Bader of 4

RT : #UWM Nursing Centers empower, educate, and care for over 8,000 Milwaukeeans yearly! #UWMvital 4

RT : 118,000 #UWM graduates live and work in Wisconsin. We're vital to Wisconsin. How is #UWMvital to you? 3

RT : Neighbors, nurses, partners shape #UWMâĂŹs prescription for improving health care: 3

RT : #UWM: vital to Wisconsin for the literary culture it fosters & the writers editors & books it produces! #UWMvital 2

RT : #uwmvital UWM lets Wisconsin communicate with the world: we teach 21 languages & have MANY globally-focused majors! 2

RT : If you haven't already checked out the #UWMvital video, take a few minutes now - 2

RT : MMAC President Tim Sheehy shares why is vital to the city driving WisconsinâĂŹs economy #uwmvital 2

RT : Watch how 's talent and research drives Milwaukee's economy and community: 2

RT : Who volunteers 160 million hours per year? Wisconsinites. #Nonprofit sector snapshot via (PDF): 2

RT : Why is #UWMvital? Hear from 5 influential #Milwaukee leaders on #UWM's $1.5+ billion economic impact in Wisconsin: 2

RT #uwmvital to our community, leading meaningful research & my own personal growth proud 1

RT : students in the support #uwmvital 1

RT : #UWM's advocacy for young people in urban centers makes #UWMvital to Superintendent : 1

RT : #uwmvital to our community, leading meaningful research, and my own personal growth. proud #gradstudent 1

RT : . lit a flame. keeps it burning. MAY 1: 1

RT : . is one of 300+ community partners who call #UWM a "true collaborative partner." 1

RT : A few Lubar #EMBA students & faculty featured in new #uwmvital video. 1

RT : Did you know that 118,000 #UWM graduates live and work in Wisconsin? Spread the word! #UWMVital 1

RT : Last day of the #UWMvital contest! How is #UWM vital to you? 1

RT : My latest project with my co-lifer, ! Proud to share so many reasons that make #uwmvital. 1

RT : RT : #UWM has a $1.5+ billion impact on WI's economy. Hear from 5 top #Milwaukee voices on what makes #UWMvital: 1

RT : We are proud to be a longstanding community partner of UW-Milwaukee! Thank you, , for the work you do: 1

RT : Where mentors can engage w/ their students & foster future UWM leaders. A place where you feel welcome! #UWMvital 1

From this point, you can read the tweets into a Corpus and do whatever we already did
with them.

Try it yourself!

• How would you scrape all of the Obama Speeches from:
http://www.americanrhetoric.com/barackobamaspeeches.htm

• What if you wanted to learn something about the Chancellor’s statements on the
Budget:
http://uwm.edu/budget/uwm-sources/chancellors-messages/

16

