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Types of Unusual Observations (1)

• An observation that is unconditionally unusual in either its Y or X
value is called a univariate outlier, but it is not necessarily a
regression outlier

• A regression outlier is an observation that has an unusual value
of the outcome variable Y, conditional on its value of the
explanatory variable X

• In other words, for a regression outlier, neither the X nor the Y
value is necessarily unusual on its own

• Regression outliers often have large residuals but do not
necessarily affect the regression slope coefficient

• Also sometimes referred to as vertical outliers
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Types of Unusual Observations (2)

• An observation that has an unusual X value - i.e., it is far from
the mean of X - has leverage on the regression line

• The further the outlier sits from the mean of X (either in a positive
or negative direction), the more leverage it has

• High leverage does not necessarily mean that it influences the
regression coefficients

• It is possible to have a high leverage and yet follow straight in line
with the pattern of the rest of the data. Such cases are sometimes
called “good” leverage points because they help the precision of
the estimates. Remember, V(B) = �2

"(X0X)�1, so outliers could
increase the variance of X.
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Types of Unusual Observations (3)

• An observation with high leverage that is also a regression
outlier will strongly influence the regression line

• In other words, it must have an unusual X-value with an unusual
Y-value given its X-value

• In such cases both the intercept and slope are affected, as the
line chases the observation

Discrepancy ⇥ Leverage = Influence
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Types of Unusual Observations (4)

• Figure (a): Outlier without influence.
Although its Y value is unusual given
its X value, it has little influence on
the regression line because it is in
the middle of the X-range

• Figure (b) High leverage because it
has a high value of X. However,
because its value of Y puts it in line
with the general pattern of the data it
has no influence

• Figure (c): Combination of
discrepancy (unusual Y value) and
leverage (unusual X value) results in
strong influence. When this case is
deleted both the slope and intercept
change dramatically.
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Assessing Leverage: Hat Values (2)

• If hi j is large, the ith observation has a substantial impact on the
jth fitted value

• Since H is symmetric and idempotent, the diagonal entries
represent both the ith row and the ith column:

hi = h0i hi

=

n
X

i=1

h2
i j

• This means that hi = hii

• As a result, the hat value hi measures the potential leverage of Yi
on all the fitted values
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Properties of Hat Values

• The average hat value is: h̄ = k+1
n

• The hat values are bound between 1
n and 1

• In simple regression hat values measure distance from the mean
of X:

hi =
1
n
+

(X � X̄)2
Pn

j=1(X j � X̄)2

• In multiple regression, hi measures the distance from the
centroid point of all of the X’s (point of means)

• Commonly used Cut-off:
• Hat values exceeding about twice the average hat-value should

be considered noteworthy
• With large sample sizes, however, this cut-off is unlikely to identify

any observations regardless of whether they deserve attention
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Hat Values in Multiple Regression

• The diagram to the right
shows elliptical contours of
hat values for two
explanatory variables

• As the contours suggest, hat
values in multiple regression
take into consideration the
correlational and variational
structure of the X’s

• As a result, outliers in
multi-dimensional X-space
are high leverage
observations - i.e., the
outcome variable values are
irrelevant in calculating hi
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Studentized Residuals (1)

• If we refit the model deleting the ith observation we obtain an
estimate of the standard deviation of the residuals S E(�1)
(standard error of the regression) that is based on the n � 1
observations

• We then calculate the studentized residuals E⇤i ’s, which have an
independent numerator and denominator:

E⇤i =
Ei

S E(�i)
p

1 � hi

Studentized residuals follow a t-distribution with n � k � 2 degrees
of freedom

• We might employ this method when we have several cases that
might be outliers

• Observations that have a studentized residual outside the ±2
range are considered statistically significant at the 95% level
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Studentized Residuals (2)

• An alternative, but equivalent, method of calculating studentized
residuals is the so-called ‘mean-shift’ outlier model:

Yi = ↵ + �1Xi1 + �2Xi2 + · · · + �kXik + �Di + "i

where D is a dummy regressor coded 1 for observation i and 0
otherwise

• We test the null hypothesis that the outlier i does not differ from
the rest of the observations, H0 : � = 0, by calculating the t-test:

t0 =
�̃

cS E(�̃)

• The test statistic is the studentized residual E⇤i and is distributed
as tn�k�2

• This method is most suitable when, after looking at the data, we
have determined that a particular case might be an outlier
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Influential Observations: Cook’s D (1)

• Cook’s D measures the ‘distance’ between Bj and Bj(�i) by
calculating an F-test for the hypothesis that b j = Bj(�i), for
j = 0, 1, . . . , k. An F-test is calculated for each observation as
follows:

Di =
E02i

k + 1
⇥ hi

1 � hi

where hi is the hat value for each observation and E0i is the
standardized residual

• The first fraction measures discrepancy; the second fraction
measures leverage

• There is no significance test for Di (i.e., the F-test here
measures only distance) but a commonly used cut-off is:

Di >
4

n � k � 1
• The cut-off is useful, but there is no substitution for examining

relative discrepancies in plots of Cook’s D versus cases, or of E0i
against hi

13 / 66

Unusual Cases: Solutions

• Unusual observations may reflect miscoding, in which case the
observations can be rectified or deleted entirely

• Outliers are sometimes of substantive interest:
• If only a few cases, we may decide to deal separately with them
• Several outliers may reflect model misspecification - i.e., an

important explanatory variable that accounts for the subset of the
data that are outliers has been neglected

• Unless there are strong reasons to remove outliers we may
decide to keep them in the analysis and use alternative models
to OLS, for example robust regression, which down weight
outlying data.

• Often these models give similar results to an OLS model that
omits the influential cases, because they assign very low weight to
highly influential cases
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Defining “Robust”

• Statistical inferences are based both on observations and on
prior assumptions about the underlying distributions and
relationships between variables

• Although the assumptions are never exactly true, some statistical
models are more sensitive to small deviations from these
assumptions than others

• Following Huber (1981) robustness signifies insensitivity to
deviations from the assumptions the model imposes

• A model is robust then, if it is (1) reasonably efficient and
unbiased, (2) small deviations from model assumptions will not
substantially impair the performance of the model and (3)
somewhat larger deviations will not invalidate the model
completely

• Robust regression is concerned with distributional robustness
and outlier resistance

• Although conceptually distinct, these are for practical purposes
synonymous
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Breakdown Point (1)

• Assume a sample, Z, with n observations, and let T be a
regression estimator.

• Applying T to Z gives us the vector of regression coefficients:

T(Z) = �̂

• Imagine all possible “corrupted” samples Z0 that replace any
observations m of the dataset with arbitrary values (i.e.,
influential cases)

• The maximum bias that could arise from these substitutions is:

effect(m; T, Z) = sup
Z0
|| T(Z0) � T(Z) ||

where the supremum is over all possible Z0
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Breakdown Point (2)

• if the effect(m; T, Z) is infinite, the m outliers have an arbitrarily
large effect on T

• The breakdown point for an estimator T for a finite sample Z is:

BDP(T,Z) = min
⇢m

n
; effect(m; T, Z)is infinite

�

• In other words, the breakdown point is the smallest fraction of
“bad” data (outliers or data grouped in the extreme tail of the
distribution) the estimator can tolerate without taking on values
arbitrarily far from T(Z)

• For OLS regression, one unusual case is enough to influence the
coefficient estimates. Its breakdown point then is:

BDP =
1
n

• As n gets larger, 1
n tends toward 0, meaning that the breakdown

point for OLS is 0%
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Influence Function (or Influence Curve)

• While the breakdown point measures global robustness, the
influence function (IF) measures local robustness

• More specifically, the IF measures the impact of a single
observation Y that contaminates the theoretically assumed
distribution F on an estimator T

IF(Y, F,T ) = lim
�!0

T {(1 � �)F + ��Y } � T {F}
�

where �Y is the probability distribution that puts its mass at the
point Y (i.e., �Y=1 at Y and 0 otherwise), and � is the proportion
of contamination at Y

• Simply put, the IF indicates the bias caused by adding outliers at
the point Y, standardized by the proportion of contamination

• The IF can be calculated from the first derivative of the estimator
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M-Estimation for Regression

• OLS minimizes the sum of squares function

min
n

X

i=1

(Ei)2

• Following from M-estimation of location, a robust regression
M-estimate minimizes the sum of a less rapidly increasing
function ⇢ of the residuals

min
n

X

i=1

⇢(Ei)

• Since the solution is not scale invariant. the residuals must be
standardized by a robust estimate of their scale, �", which is
estimated simultaneously. Usually, the median absolute
deviation is used:

min
n

X

i=1

⇢

 

Ei

�̂E

!
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M-estimation for Regression (2)

• Taking the derivative and solving produces the shape of the
influence function:

n
X

i=1

 

 

Ei

�̂E

!

xi,where  = ⇢0

• We then substitute  with an appropriate weight function
n

X

i=1

wi

 

Ei

�̂E

!

xi

• Typically the Huber or bisquare weight is employed. In other
words, the solution assigns a different weight to each case
depending on the size of its residual and thus minimizes the
weighted sum of squares

n
X

i=1

wiE2
i
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M-Estimation and Regression (3)

• Since the weights cannot be estimated before fitting the model
and estimates cannot be found without the weights, an iterative
procedure is needed to find estimates

• Initial estimates of b are selected using weighted least squares
• The residuals from this model are used to calculate an estimate

of the scale of the residuals �(0)
e and the weights w(0)

i
• The model is then refit with several iterations minimizing the

weighted sum of squares to obtain new estimates of b

b(l) = (X0WX)�1X0Wy

• where l is the iteration counter; in the ith row of the model matrix
are x0i and W ⌘ diag{wl�1

i }
• This process continues until the model converges (b(l) ' b(l�1))
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Asymptotic Standard Errors

• For all M-estimators (including the MM-estimator), asymptotic
standard errors are given by the square root of the diagonal
entries of the estimated asymptotic covariance matrix
(X0WX)�1�2

E from the final IWLS fit
• The ASE for a particular coefficient, is then given by:

S E�̂ =

s

P

[W(Ei)]2

[
P

W0(Ei)/n]2 (X0X)�1

• The ASEs are relaibale if the sample size n is sufficiently large
relative to the number of parameters estimated

• Other evidence suggests that their reliability also decreases as
the proportion of influential cases increases

• As a result, if n < 50 bootstrapping should be considered
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Combining Resistance and Efficiency: MM-estimation (1)

• MM estimation is perhaps the most commonly employed method
today

• “MM” in the name refers to the fact that more than one
M-estimation procedure is used to calculate the final estimates

• Combine a high breakdown point (50%), bounded influence
function and high efficiency under normal errors (⇡ 95%)
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Steps to MM-estimation (1)

1. Initial estimates of the coefficients B(1) and corresponding
residuals e(1)

i are taken from a highly resistant robust regression
(i.e., a regression with a breakdown point of 50%)

• Although the estimator must be consistent, it is not necessary that
it is efficient. As a result, S-estimation with Huber or Bisquare
weights is typically employed here

2. The Residuals E(1)
i from the S-estimation stage 1 are used to

compute an M-estimation of the scale of the residuals
3. Finally, the initial estimates of the residuals e(1)

i from stage 1 and
of the residual scale �E from stage 2 are used to compute a
single-step M-estimate

n
X

i=1

wi

0

B

B

B

B

B

@

E(1)
i

�̂E

1

C

C

C

C

C

A

xi

where the wi are typically Huber or bisquare weights. In other
words, the M-estimation procedure at this stage needs only a
single iteration of weighted least squares
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MM-estimation in R

weakliem <- read.table(
"http://quantoid.net/files/reg3/weakliem2.txt",
sep=",", header=T, row.names=1)

library(MASS)
mod5 <- rlm(secpay ~ gini, data=weakliem,

method="MM")
summary(mod5)

##
## Call: rlm(formula = secpay ~ gini, data = weakliem, method = "MM")
## Residuals:
## Min 1Q Median 3Q Max
## -9.7533 -2.3654 0.4203 4.6373 57.8463
##
## Coefficients:
## Value Std. Error t value
## (Intercept) -4.5408 4.8936 -0.9279
## gini 0.4561 0.1276 3.5759
##
## Residual standard error: 6.068 on 24 degrees of freedom
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Comparison of Diagnostics

Scatter Plot Matrix
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Non-constant Error Variance

• Also called Heteroskedasticity
• An important assumption of the least-squares regression model

is that the variance of the errors around the regression surface is
everywhere the same: V(E) = V(Y |x1, . . . , xk) = �2.

• Non-constant error variance does not cause biased estimates,
but it does pose problems for efficiency and the usual formulas
for standard errors are inaccurate

• OLS estimates are inefficient because they give equal weight to
all observations regardless of the fact that those with large
residuals contain less information about the regression

• Two types of non-constant error variance are relatively common:
• Error variance increases as the expectation of Y increases;
• There is a systematic relationship between the errors and one of

the X’s
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Assessing Non-constant Error Variance

• Direct examination of the data is usually not helpful in assessing
non-constant error variance, especially if there are many
predictors. Instead, we look to the residuals to uncover the
distribution of the errors.

• It is also not helpful to plot Y against the residuals E, because
there is a built-in correlation between Y and E:

Y = Ŷ + E

• The least squares fit ensures that the correlation between Ŷ and
E is 0, so a plot of these (residual plot) can help us uncover
non-constant error variance.

• The pattern of changing spread is often more easily seen using
studentized residuals E⇤2i against Ŷ

• If the values of Y are all positive, we can use a Spread-level plot
• plot log(| E⇤i |) (called the log spread) against log Ŷ (called the log

level)
• The slope b of the regression line fit to this plot suggests the

variance-stabilizing transformation Y (p), with p = 1 � b
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Example Model

Weakliem <- read.table(
"http://quantoid.net/files/reg3/weakliem.txt")
W <- Weakliem[-c(21,22,24, 25,49), ]
mod2 <- lm(secpay ~ log(gdp), data=W)
plot(fitted.values(mod2), rstudent(mod2))
abline(h=0, lty=2)
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Testing for Non-Constant Error variance (1)

• Assume that a discrete X (or combination of X’s) partitions the
data into m groups.

• Let Yi j denote that ith of n j outcome-variable scores in group j
• Within-group sample variances are then calculated as follows:

S 2
j =

Pn j

i=1(Yi j � Ȳ j)2

n j � 1

• We could then compare these within-group sample variances to
see if they differ

• If the distribution of the errors is non-normal, however, tests that
examine S 2

j directly are not valid because the mean is not a good
summary of the data
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Testing for Non-Constant Error variance (2): Score Test

• A score test for the null hypothesis that all of the error variances
�2 are the same provides a better alternative

1. We start by calculating the standardized squared residuals

Ui =
E2

i

�̂2 =
E2

i
P

E2
i

n

2. Regress the Ui on all of the explanatory variable X’s, finding the
fitted values:

Ui = ⌘0 + ⌘1Xi1 + · · · + ⌘pXip + !i

3. The score test, which s distributed as �2 with p degrees of
freedom is:

S 2
0 =

P

(Ûi � Ū)2

2
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R-script testing for non-constant error variance

• The ncvTest function in the car library provides a simple way
to carry out the score test

• The result below shows that the non-constant error variance is
statistically significant
library(car)

## Warning: package ’car’ was built under R version 3.4.1

ncvTest(mod2, data=W)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 6.025183 Df = 1 p = 0.01410317

ncvTest(mod2, var.formula=~log(gdp), data=W)

## Non-constant Variance Score Test
## Variance formula: ~ log(gdp)
## Chisquare = 6.025183 Df = 1 p = 0.01410317
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Generalized Least Squares (1)

• Sometimes, we do not know the relationship between xi and
var(ui|xi).

• In this case, we can use a Feasible GLS model.
• FGLS estimates the weight from the data. That weight is then

used in a WLS fashion.
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GLS: Steps

1. Regress y on xi and obtain residuals ûi.
2. Create log(û2

i ) by squaring and then taking the natural log of the
OLS residuals from step 1.

3. Run a regression of log(û2
i ) on xi and obtain the fitted values ĝi.

4. Generate ĥi = exp(ĝi).
5. Estimate the WLS of y on xi with weights of 1

ĥi
.
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FGLS Example: Inequality Data

W2 <- Weakliem[-c(25,49), ]
mod1.ols <- lm(secpay ~ gini*democrat, data=W2)
aux.mod1 <- update(mod1.ols, log(resid(mod1.ols)^2) ~ .)
h <- exp(predict(aux.mod1))
mod.fgls <- update(mod1.ols, weight=1/h)
with(summary(mod.fgls), printCoefmat(coefficients))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9619416 0.0476415 20.1913 < 2.2e-16 ***
## gini 0.0044149 0.0013294 3.3210 0.001836 **
## democrat 0.4662928 0.0806427 5.7822 7.577e-07 ***
## gini:democrat -0.0102999 0.0022211 -4.6374 3.288e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Heteroskedastic Regression in R
Charles Franklin wrote a library of ML techniques in R including
heteroskedastic regression. We can do the following:

source("http://www.quantoid.net/files/reg3/mlhetreg.r")
X <- model.matrix(mod1.ols)[,-1]
Z <- X
het.mod <- MLhetreg(W2$secpay, X, Z)
summary(het.mod)

##
## Heteroskedastic Linear Regression
##
## Estimated Parameters
## Estimate Std. Error z-value Pr(>|z|)
## Constant 0.9844411 0.0491585 20.0259 < 2.2e-16 ***
## gini 0.0037411 0.0015136 2.4717 0.0134456 *
## democrat 0.4474368 0.0753627 5.9371 2.901e-09 ***
## gini:democrat -0.0097254 0.0021095 -4.6103 4.020e-06 ***
## ZConstant -9.9427564 1.4019902 -7.0919 1.323e-12 ***
## gini 0.1038281 0.0359335 2.8894 0.0038592 **
## democrat 7.1919603 1.8088570 3.9760 7.009e-05 ***
## gini:democrat -0.1847861 0.0495987 -3.7256 0.0001948 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: 109.9483
##
## Wald Test for Heteroskedasticity
## Wald statistic: 16.16162 with 3 degrees of freedom
## p= 0.001050662
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Table: Comparing Models
OLS FGLS HetReg

(Intercept) 0.941 0.962 0.984
(0.060) (0.048) (0.049)

gini 0.005 0.004 0.004
(0.002) (0.001) (0.002)

democrat 0.486 0.466 0.447
(0.088) (0.081) (0.075)

gini:democrat -0.011 -0.010 -0.010
(0.002) (0.002) (0.002)
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Robust Standard Errors (1)

• Robust standard errors can be calculated to compensate for an
unknown pattern of non-constant error variance

• Robust standard errors require fewer assumptions about the
model than WLS (which is better if there is increasing error
variance in the level of Y)

• Robust standard errors do not change the OLS coefficient
estimates or solve the inefficiency problem, but do give more
accurate p-values.

• There are several methods for calculating heteroskedasticity
consistent standard errors (e.g., known variously as White,
Eicker or Huber standard errors) but most are variants on the
method originally proposed by White (1980).
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Robust Standard Errors (2): White’s Standard Errors

• The covariance matrix of the OLS estimator is:

V(b) = (X0X)�1X0⌃X(X0X)�1

= (X0X)�1X0V(y)X(X0X)�1

• Where V(y) = �2
"In if the assumptions of normality and

homoskedasticity are satisfied. The variance simplifies to:

V(b) = �2
"(X0X)�1

• In the presence of non-constant error variance, however, V(y)
contains nonzero covariance and unequal variances

• In these cases, White suggests a consistent estimator of the
variance that constrains ⌃ to a diagonal matrix containing only
squared residuals
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Robust Standard Errors (3): White’s Standard Errors

• The heteroskedasticity consistent covariance matrix (HCCM)
estimator is then:

V(b) = (X0X)�1X0�̂X(X0X)�1

where �̂ = e2
i In and the ei are the OLS residuals

• This is what is known as HC0 - White’s (1980) original recipe.
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Hat Values
Other HCCMs use the “hat value” which are the diagonal elements of
X (X0X)�1 X0

• These give a sense of how far each observation is from the
mean of the X’s.

• Below is a figure that shows two hypothetical X variables and the
plotting symbols are proportional in size to the hat value
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Other HCCM’s

MacKinnon and White (1985) considered three alternatives: HC1,
HC2 and HC3, each of which offers a different method for finding �.

• HC1: N
N�K ⇥ HC0.

• HC2: �̂ = diag


e2
i

1�hii

�

where hii = xi(X0X)�1x0i

• HC3: �̂ = diag


e2
i

(1�hii)2

�

• HC4: �̂diag


e2
i

(1�hii)�i

�

, where �i = min
n

4, Nhii
p

o

• HC4m: �̂ = diag


e2
i

(1�hii)�i

�

, where �i = min
n

�1,
nhii

p

o

+ min
n

�2,
nhii

p

o

,
�1 = 1 and �2 = 1.5.

• HC5: �̂ = diag


e2
i

(1�hii)�i

�

, where �i = min
n

nhii
p ,max

n

4, nkhmax
p

oo

with
k = 0.7
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Coverage Percentages for HCCMs (N=20)

N=20, x~t3
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Coverage Percentages for HCCMs (N=60)

N=60, x~t3
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Coverage Percentages for HCCMs (N=100)

N=100, x~t3
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Coverage Percentages for Bootstrap-t Intervals
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Comparison of Robust and Classical Standard Errors

King and Roberts (2014) suggest that when robust and classical
standard errors diverge, it is not an indication that Robust SEs should
be used, but that the model is mis-specified.

• A formal test can tell whether the mis-specification is bad
enough.
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GIM Test

The classical variance-covariance matrix of parameters in MLE is the
negative inverse of the Hessian:

• Vc(�̂) = �P�1

The robust variance-covariance matrix is given by:
• Vr(�̂) = P�1MP�1 where M is the square of the gradient.
• Vr(�̂) = Vc(�̂) when M = �P

A test of model mis-specification comes by evaluating E(M + P) = 0
and obtaining sampling variance estimates of the test statistic with a
parametric bootstrap.
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GIM Test in R

source("http://www.quantoid.net/files/reg3/bootstrapim.normal.r")
library(maxLik) # for numericGradient function

## Loading required package: miscTools
## Loading required package: methods
##
## Please cite the ’maxLik’ package as:
## Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood
estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.
##
## If you have questions, suggestions, or comments regarding the ’maxLik’ package, please use
a forum or ’tracker’ at maxLik’s R-Forge site:
## https://r-forge.r-project.org/projects/maxlik/

bs.out <- bootstrapIM.normal(formula(mod2), W, 10, 10)

bs.out

## $stat
## [,1]
## [1,] 17.43959
##
## $pval
## [1] 0.5454545
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Test Results

The test suggests that
• We do have heteroskedasticity according to ncvTest().
• The test suggests that the difference between robust SEs and

classical SEs is sufficiently big that the choice between the two is
meaningful. Thus, we should think about other ways to re-specify
the model.

• Might be some question about whether this advice is strictly
necessary in the linear model where the variances are
separable.
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P-values

As Berk (2004) suggests - one of the fundamental question about
statistical inference is - when p-values concern confidence intervals
and statistical tests, to what does the probability refer? That is,
“probability of what”?

• Assuming X is either fixed by design or considered fixed when
the particular set of x values arise in the data, then random
sampling results in inferences as one would expect.

• Sampling schemes other than randomness result in rather
different properties with respect to inference.
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Dealing with Apparent Populations

Below are some methods for dealing with non-random sample
selection (particularly when we have non-randomly collected
something more like a population). We will talk about each in turn.

1. Treat the data as the population.
2. Treat the data as if they were randomly sampled from a

population
3. Redefine the population.
4. Invent a population.
5. Model-based sampling.
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Treat Data Like a Population

• Description is the only game - the relationship you calculate is
the relationship in the population.

• To the extent descriptions are not great (i.e., don’t explain a lot of
variation), the coefficients you calculate may still not provide
insight into the DGP.

• Many problems do not require the frequentist thought experiment
of infinite repeated sampling - treating the data as fixed is fine.

• This might be particularly true in policy situations.
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Treat the data as if they were randomly sampled from a population

Suggest that the data are approximately randomly sampled from a
real population.

• Very good data and/or theory required to justify this.
• “Full disclosure” is insufficient - saying you assume your sample

is a random sample without evaluation of those assumptions
leaves readers not knowing which results to believe.

• Even if the population from which the sample is well-defined,
sampling often does not happen in anything close to a random
fashion.

Consequences:
• Regression parameters are bad estimates of population

parameters (coefficients and variance explained can be
attenuated).
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Example

Sampling strategy: Collect water samples from a beach every
Wednesday around noon over the Summer to measure levels of
toxins from storm overflow. Want to infer to all days/times for that
beach. Need to make (at least) the following assumptions:

• Toxin concentrations are independent of time of day and day of
week.

• The 7-day time gap is sufficient to remove any “memory” (thus
observations would be independent).

Data could (and should) be marshaled to provide evidence in favor of
these assumptions.
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Redefine the Population

Another seemingly reasonable strategy might be to redefine the
population post-sampling such that the sample is a random draw
from the population.

• Since the missing data occurred after the sampling procedure
happened, this is also not appropriate.

• The process that made the data unavailable may be confounded
with the relationship of interest.

This makes the justification for the inferential process circular.
Convenience samples are, simply, not good fodder for (frequentist)
inference.

To consult the statistician after an experiment is finished is
often merely to ask him to conduct a post mortem
examination. He can perhaps say what the experiment died
of. (Fisher, 1938)
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Invent a Population: Superpopulation

The superpopulation argument is one of the mot prevalent in political
science.

• Definition is often circular - the population is the set of other
possible circumstances from which this sample could be a
random sample.

• Superpopulations are not real and thus not well-defined, so
inferences to superpopulations are tenuous at best.

• Some superpopulations could exist, but to make inferences to
those sorts of populations, the conditions under which the
superpopulation exists should be both well-defined and
theoretically/empirically justifiable.

Even more problematic is the much of our “population” data suffers
from non-random, perhaps non-ignorable missingness.
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Superpopulation Example (Berk)

For example, monthly economic indicators from the year 2000 might
be treated as “random” realizations of indicators that could have
existed. Things that need to be specified for this to make sense:

• The data generating process (i.e., a strong and convincing
theory, particularly about the random processes leading to this
rather than another set of values),

• The conditioning factors pertaining to the observation - what
were the particularities of the year 2000 (e.g., exchange rates
with other countries, patterns of tariffs and constraints on
international trade). These serve as the foundation for the
superpopulation.

• Technically, even then you would need to show empirically that
there are other years like the year 2000 and that the year 2000
can be meaningfully treated as a sample.
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Model-Based Sampling

Propose a model by which nature produces data inferences are made
to the model said to be responsible for the data generating process.

• The outcome variables are thought to be random realizations
from the model (that is, the model could have generated different
values of y).

• Since the outcome variables are random variables, regardless of
how many of them we have (even if we have all N of them), each
one was one realization of a random process.

• Even if we have the population, uncertainty remains regarding
the parameters of the model that generated this (and could
generate another) realization.

• The sampling scheme is irrelevant because all observations are
assumed to be caused by the same natural process.
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Justification of Model-based Sampling

Distributional assumption is key - why would we expect deviations
from expectation to be normally distributed?

• CLT says that the sum of a bunch of independent, normal
random variables approaches normality.

• The disturbance term in the model can be thought of in such a
way as to justify such a distribution.

• A story is still needed to justify this - what sorts of things
comprise the disturbance term? Can they really be thought to be
independent?
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Problems in Model-based Sampling

At best in the literature a hypothesis is done with the null hypothesis
being the assumed distribution - failure to reject is taken as evidence
the null is true.

• Treats failure to reject “accepting the null”.
• These tests often have low power (leading to fewer rejections of

falls null hypotheses than we would like).
• Many different random processes (i.e., distributions) can produce

functionally equivalent-looking data.

For inference to make sense, the method that nature uses to make
data has to be well-understood and explicated.
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Sampling Conclusions

• Remember, we are data analysts/social scientists, not magicians.
• Assumptions, conditions, models required for the frequentist

thought experiment of one kind or another to make sense must
be reasonable, theoretically justified and empirically evaluated.
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What Does “Holding Constant” Mean?

Mathematically:
• A covariance adjustment - removing variance in both x and y that

can be explained by z (e.g., partial out the effect of z).

Substantively:
• Independent variables must be independently manipulable.
• What would it mean, when predicting income, to hold occupation

constant while “manipulating” education?
• Education is theoretically manipulable - people can gain more

education and interventions aimed at such can be undertaken.
• What would it mean to hold an eventual occupation constant while

intervening on education?
• Post hoc considerations are rather more helpful, but still

unsatisfying.

Covariance Adjustment 6=) Independent Manipulability
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Some Cautions about Statistical Inference

• Models have to be right and sampling procedures well-justified
for inference to make sense. Failure on either count means
inferences are “right” to a greater or lesser degree.

• p-values will almost always be anti-conservative. Since we rarely
(never) take into account model selection uncertainty, total
variability is grossly underestimated. Even formal procedures to
correct for multiple testing will be insufficient here.

• Inferences should be done on a validation dataset or
cross-validation should be used to prevent overfitting and
capitalizing on chance through exploration.
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Significant vs Not Significant

Gelman and Stern (2006) argue that the distinction between
significant and not significant is less interesting than we think.

• Comparing levels of statistical significance is not appropriate.
• When comparing models, more matters than sign and

significance.
• Need to understand whether two estimates are statistically and

substantively different from each other.

65 / 66

Take Away

• There are many assumptions about our modeling that we don’t
(but should) test.

• Rejecting the null is a necessary, but not sufficient condition for
being “right”.

• Pay attention to potential non-linearities. Think about the
functional forms of your theories and the extent to which those
assumptions are truly justified.

• When you use new tools make sure you understand what they
can/can’t or should/shouldn’t be used do.
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