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Linear Model Visualization
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Goals of the Lecture
Discuss effective ways of testing and presenting effects in
linear models

Dummy variables
Presenting and testing pairwise comparisons
Quasi-variances
Optimal Visual Testing Intervals
Multiplicity Problem
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Categorical Explanatory Variables
Linear regression can be extended to accommodate categorical variables (factors) using
dummy variable regressors (or indicator variables)
Below a categorical variable is represented by a dummy regressor , (coded 1 for one
category, 0 for the other):

This fits two regression lines with the same slope but different intercepts. In other words,
the coefficient  represents the constant separation between the two regression lines:

D

Yi = α + βXi + γDi + εi

γ

Yi = α + βXi + γ(0) + εi = α + βXi + εi
Yi = α + βXi + γ(1) + εi = (α + γ) + βXi + εi
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Categorical Explanatory Variables (2)
In Figure (a) failure to account for a categorical variable (gender) does not produce
significantly different results, either in terms of the intercept or the slope
In Figure (b) the dummy regressor captures a significant difference in intercepts. More
importantly, failing to include gender gives a negative slope for the relationship between
education and income (dotted line) when in fact it should be positive for both men and
women.
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Multi-Category Explanatory Variables
Dummy regressors are easily extended to explanatory variables with more than two
categories.
A variable with  categories has  regressors:
As with the two-category case, one of the categories is a reference group (coded 0 for all
dummy regressors).

Category

Blue Collar 1 0

Professional 0 1

White Collar 0 0

m m − 1

D1 D2
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Choosing the Reference Category
How do we choose the reference category?

The choice of reference category is technically irrelevant - all choices produce exactly the
same inferences.

Theory may suggest we compare to a particular category

You should leave out the category in which you are most interested.
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Multi-Category Explanatory Variables (2)
A model with one quantitative predictor (e.g., income) then takes the following form:

This produces three parallel regression lines:

Again, these lines are different only in terms of their intercepts

i.e., the  coefficients represent the constant distance between the regression lines. 
and  are the differences between occupation types compared to white collar, when
holding income constant.

Yi = α + βXi + γ1Di1 + γ2Di2 + εi

Blue Collar: Yi = (α + γ1) + βXi + εi

Professional: Yi = (α + γ2) + βXi + εi

White Collar: Yi = α + βXi + εi

γ γ1

γ2
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Dummy Variables in R
in R, if categorical variables are properly specified as factors, dummy coding is done by
default
To specify a variable as a factor:

It is easy to change the reference category in R:

library(car)
data(Duncan)
contrasts(Duncan$type)

##      prof wc
## bc      0  0
## prof    1  0
## wc      0  1

type2 <- relevel(Duncan$type, ref="wc")
contrasts(type2)

##      bc prof
## wc    0    0
## bc    1    0
## prof  0    1 13 / 65
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Effects of Dummy Variables in R (1)
data(Duncan)
mod1<-lm(prestige~income+education+
    type, data=Duncan)
summary(mod1)

## 
## Call:
## lm(formula = prestige ~ income + education + type, data = Duncan)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.890  -5.740  -1.754   5.442  28.972 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.18503    3.71377  -0.050  0.96051    
## income        0.59755    0.08936   6.687 5.12e-08 ***
## education     0.34532    0.11361   3.040  0.00416 ** 
## typeprof     16.65751    6.99301   2.382  0.02206 *  
## typewc      -14.66113    6.10877  -2.400  0.02114 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.744 on 40 degrees of freedom
## Multiple R-squared:  0.9131,    Adjusted R-squared:  0.9044 
## F-statistic:   105 on 4 and 40 DF,  p-value: < 2.2e-16
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Effects of Dummy Variables in R (2)
The lm output suggests that the categorical variable type has a strong effect on
prestige.
The incremental -test confirms this findingF

Anova(mod1)

## Anova Table (Type II tests)
## 
## Response: prestige
##           Sum Sq Df F value    Pr(>F)    
## income    4246.1  1 44.7201 5.124e-08 ***
## education  877.2  1  9.2388  0.004164 ** 
## type      3708.7  2 19.5302 1.208e-06 ***
## Residuals 3798.0 40                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The Reference Category Problem
Typically categorical variables in statistical models are reported in contrast to a reference
category

It is then difficult to make inferences about differences between categories aside from
the reference category

Typical solutions:

Refit the model with a different reference category
Report the full variance-covariance matrix for the estimated parameters. A standard
error between any two dummy regressors could then be easily calculated:

For a categorical variable with  levels, this would require reporting  covariances,
making it difficult to do so if only because of space constraints.

var(aX + bY ) = a2var(X) + b2var(Y ) + 2abcov(X,Y )

p
p(p−1)

2
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Calculating Different Contrasts
It is straightforward to calculate all pairwise comparisons.

data(Ornstein, package="carData")
omod <- lm(interlocks ~
    nation + sector + log2(assets),
    data=Ornstein)
library(multcomp)
summary(glht(omod, linfct=mcp(nation = "Tukey")))

## 
##      Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lm(formula = interlocks ~ nation + sector + log2(assets), data = Ornstein)
## 
## Linear Hypotheses:
##                Estimate Std. Error t value Pr(>|t|)    
## OTH - CAN == 0   -3.053      3.087  -0.989    0.745    
## UK - CAN == 0    -5.329      3.071  -1.735    0.294    
## US - CAN == 0    -8.491      1.717  -4.944   <0.001 ***
## UK - OTH == 0    -2.276      3.865  -0.589    0.932    
## US - OTH == 0    -5.438      3.018  -1.802    0.262    
## US - UK == 0     -3.162      3.028  -1.044    0.711    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
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factorplot
library(factorplot)
ofp <- factorplot(
    omod,
    factor.variable="sector")
plot(ofp)
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sigplot
I also recently developed a different solution that's based on the D3.js library.

One way of using the function is by giving it a model object (that works with the
ggpredict() function) and a model term.
Another way of interacting with it is by giving it output from a Bayesian model.

This could be output generated by something like BUGS, JAGS or Stan.
It could also be data generated by parametric bootstrap from models estimated in
the Frequentist contexs. In this case, the model would be assuming flat priors over
the support of the model parameters.

This plot is interactive - so doesn't translate as well in print, but scales better than the
factorplot() output.

install with remotes::install_github("davidaarmstrong/daviz")
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sigplot 2
library(daviz)
library(r2d3)
omod2 <- lm(interlocks ~
    nation + sector,
    data=Ornstein)

sigd3(omod2, "sector", 
      fname="sector_plot.html", 
      return_iFrame = TRUE)
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Quasi-Variances
Assuming that the dummy variables  represent the  categories of the
variable , we could estimate the model: .

To find the -value for the comparison of  to , we would need to calculate:

or more generally:

dj j = 0, … , J
x y = b0 + b1d1 + b2d2 + … + bjdj + Zg + e

p b1 b2

t1,2 =
b1 − b2

√var(b1) + var(b2) − 2cov(b1, b2)

tj,k =
bj − bk

√var(bj) + var(bk) − 2cov(bj, bk)
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Quasi-variances (2)
Imagine that we could replace:

with

The  terms are the quasi-variances.

They can be presented along side (or instead of) conventional standard errors.

tj,k =
bj − bk

√var(bj) + var(bk) − 2cov(bj, bk)

tj,k ≈
bj − bk

√qj + qk

q
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Optimal Visual Testing Confidence Intervals
Consider the Ornstein model example from above. A static effect plot would look as follows:

b <- omod2$coef[5:13]
v <- vcov(omod2)[5:13,5:13]
plot_dat <- tibble(
  sector = factor(2:10, 
                  levels=1:10, 
                  labels=levels(Ornstein$sector)), 
  b = unname(b), 
  se = sqrt(diag(v)), 
  lwr = b - qt(.975, 
               omod2$df.residual)*se, 
  upr = b + qt(.975, 
               omod2$df.residual)*se)
ggplot(plot_dat, aes(x=reorder(sector, b, mean), 
                     y=b, 
                     ymin=lwr, ymax=upr)) + 
  geom_pointrange() + 
  geom_hline(yintercept=0, linetype=3) + 
  theme_classic() +
  labs(x="Sector", 
       y="Predicted Interlocks\n(Relative to AGR)")
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Optimal Visual Testing Confidence Intervals
(2)
Why use  confidence intervals?

Displays the non-rejectable null hypothesis values for the parameter of interest.
Manifestly unhelpful if we want to use the confidence intervals for testing hypotheses
about differences across parameters.

Some have suggested  confidence intervals as a good alternative.

 works more often than , but not always.

Why not just optimize this - find the best confidence level such that whether confidence
intervals overlap represents to the greatest degree possible the actual testing results?

95%

84%

84% 95%
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To use the function, you'll need to install
the psre package from my github:

You can then find the optimal visual testing
confidence intervals with:

Implementation

remotes::install_github("davidaarmstrong/psre")

library(psre)
o <- optCL(omod2, 
           varname="sector", 
           add_ref=TRUE, 
           grid_range=c(.5,.99))

o[c("opt_levels", "opt_errors", "lev_errors", "err_dat")]

## $opt_levels
## [1] 0.7276768
## 
## $opt_errors
## [1] 0.02222222
## 
## $lev_errors
## [1] 0.2
## 
## $err_dat
## # A tibble: 1 x 20
## # Rowwise: 
##    cat1  cat2    b1    b2    v1    v2   vt1   vt2 cov12 comp_var  diff 
##   <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>    <dbl> <dbl> 
## 1     3     8 -4.57  7.38  38.9  7.37  38.9  7.37  4.19     37.9 -12.0 
## # … with 8 more variables: p <dbl>, lb1 <dbl>, ub1 <dbl>, lb2 <dbl>, ub
## #   sig <dbl>, olap <dbl>, crit <dbl>
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Implementation (2)
plot_dat <- tibble(
  sector = factor(2:10, 
                  levels=1:10, 
                  labels=levels(Ornstein$sector)), 
  b = unname(b), 
  se = sqrt(diag(v)), 
  lwr = b - qt(mean(o$opt_levels), 
               omod2$df.residual)*se, 
  upr = b + qt(mean(o$opt_levels), 
               omod2$df.residual)*se)
ggplot(plot_dat, aes(x=reorder(sector, b, mean), 
                     y=b, 
                     ymin=lwr, ymax=upr)) + 
  geom_pointrange() + 
  geom_hline(yintercept=0, linetype=3) + 
  theme_classic() +
  labs(x="Sector", 
       y="Predicted Interlocks\n(Relative to AGR)")

NB: Optimal Visual Testing Intervals used (  ) to
identify  tests. Even though the construction and
mining intervals do not overlap, their difference is not

≈ 73%
95%
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Multiplicity Problem
Usually, we choose to control Type I error rates when we test hypotheses, by evaluating a
hypothesis, , at a pre-specified significance level, .

Assume two hypotheses, , both of which are true, and we are testing
them independently, each at level .
The probability of not rejecting either hypothesis is 

The probability of falsely rejecting at least one test is ,
The probability of falsely rejecting at least one test among a set of  tests 

 is .

H α

H = {H1,H2}
α = 0.05

(1 − α)2 = 0.9025
1 − (1 − α)2 = 0.0975

m
H = {H1, … ,Hm} 1 − (1 − α)m
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Actual Type I Error Rates with Multiple Testing
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Controlling for Multiple Testing
Hypotheses Not Rejected Rejected Total

True U V

False T S

Total W R

m0

m − m0

m
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Extending Type I Error to Multiple Tests
Per-comparison Error Rate:  is the expected proportion of Type I errors
among  comparisons. If tested independently, 
Family-wise Error Rate:  is the probability of committing at least
one Type I error.

Most commonly used measure, good when number of comparisons is moderate or
where strong evidence is needed.
FWER approaches 1 as number of comparisons increases without a multiplicity
adjustment
FWER reduces to the Type I error rate  when 
A less strict version , where the probability of making some
small number ($k$) of Type I errors is acceptable.

False Discovery Rate: If , the proportion of false rejections among all rejections.

. Extensions here abound and is an area of active

research.

PCER =
E(V )

m

m PCER = ≤ α
αm0

m

FWER = P(V > 0)

α m = 1
gFWER = P(V > k)

Q = V
R

FDR = E ( R > 0)P(R > 0)V
R
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Strong vs. Weak Control
Control of Type I error rate is considered weak if the Type I error rate is controlled only
under the global null hypothesis (i.e., assuming  are all true)
Control of Type I error rate is considered strong if the Type I error rate is controlled
under any configuration of true null hypotheses (except for the null set).
Controlling FWER in the strong sense is the most stringent (i.e., conservative) test.

H1, … ,Hm
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Single-step vs. Stepwise Procedures
In single-step procedures, the information about rejecting or not rejecting one
hypothesis does not enter into the decision for another. (Example: Bonferroni)
In stepwise procedures (different from and decidedly less controversial than "stepwise
regression"), hypotheses are ordered (in a potentially data-dependent fashion) and
either:

In a step-down procedure, hypotheses are rejected until the first non-rejection and
then all others are retained. (Example: Holm)
In a setp-up procedure, hypotheses are retained until the first rejection then all
others are rejected. (Example: Hochberg)
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Adjusted p-values
-values can be calculated adjusting for any multiple comparison procedure mentioned

above. The adjusted -value for test  (call them ) take the form:

To control FWER in the strong sense, Bonferroni (single-step), Holm (step-down) and
Hochberg (step-up) are options, though Holm's method is known to dominate
Bonferroni's under a set of minimally restrictive assumptions.

To control FDR, Benjamini-Hochberg (BH) works under the assumption of independent
tests and Benjamini-Yekuteli (BY) works when independence cannot be assumed.

p

p i qi

qi = inf {α ∈ (0, 1)|Hi is rejected at level α}
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Above, we tested 45 hypotheses
simultaneously, so 5\% (or ) could
will be significant by chance''.

The Holm correction sets the  for
the entire set of tests equal to the
desired rate by setting the  for
each individual test to  where 

 is the number of comparisons and
 is the rank-order of the p-value.

Compare this to the Bonferroni p-
value of .

Multiplicity Correction

≈ 2

α

α
α

n−i+1

n
i

α
n
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Different Corrections
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Factorplot Summary
summary(ofp2)

##     sig+ sig- insig
## AGR    0    1     8
## BNK    3    0     6
## CON    0    0     9
## FIN    0    1     8
## HLD    0    0     9
## MAN    0    0     9
## MER    0    1     8
## MIN    0    0     9
## TRN    0    0     9
## WOD    0    0     9

print(ofp2, sig=T)

##           Difference    SE p.val
## AGR - BNK    -17.323 5.185 0.042
## BNK - FIN     18.597 4.784 0.006
## BNK - MER     18.203 5.377 0.037
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OVT Adjustment
o2 <- optCL(omod2, 
           varname="sector", 
           add_ref=TRUE, 
           grid_range=c(.5,.99), 
           adjust="holm")

o2[c("opt_levels", "opt_errors", "lev_errors", "err_dat")]

## $opt_levels
## [1] 0.9500000 0.9504040 0.9553535 0.9603030 0.9900000
## 
## $opt_errors
## [1] 0.06666667
## 
## $lev_errors
## [1] 0.06666667
## 
## $err_dat
## # A tibble: 3 x 20
## # Rowwise: 
##    cat1  cat2    b1    b2    v1    v2   vt1   vt2 cov12 comp_var   diff
##   <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>    <dbl>  <dbl>
## 1     1     8     0  7.38     0  7.37     0  7.37     0     7.37  -7.38
## 2     1     9     0 11.0      0 13.0      0 13.0      0    13.0  -11.0 
## 3     1    10     0  8.82     0 12.5      0 12.5      0    12.5   -8.82
## # … with 8 more variables: p <dbl>, lb1 <dbl>, ub1 <dbl>, lb2 <dbl>, ub
## #   sig <dbl>, olap <dbl>, crit <dbl>
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Implementation (2)
plot_dat <- tibble(
  sector = factor(2:10, 
                  levels=1:10, 
                  labels=levels(Ornstein$sector)), 
  b = unname(b), 
  se = sqrt(diag(v)), 
  lwr = b - qt(mean(o2$opt_levels), 
               omod2$df.residual)*se, 
  upr = b + qt(mean(o2$opt_levels), 
               omod2$df.residual)*se)
ggplot(plot_dat, aes(x=reorder(sector, b, mean), 
                     y=b, 
                     ymin=lwr, ymax=upr)) + 
  geom_pointrange() + 
  geom_hline(yintercept=0, linetype=3) + 
  theme_classic() +
  labs(x="Sector", 
       y="Predicted Interlocks\n(Relative to AGR)")

NB: Optimal Visual Testing Intervals used (  ) to
identify  tests. Even though the AGR does not
overlap with MIN, TER or WOD, they are not statistically

≈ 96%
95%
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Tomorrow
Interactions
Relative Importance
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