
Regression III
Linearity II

Dave Armstrong

Diagnosing Non-Linearity
Diagnosing non-linearity in relationships between continuous predictors is a bit more tricky.

We will use an analysis of the residuals to diagnose whether the relationship between
and is well-characterized by a line.

We will also need to figure out a flexible way to model the dependencies between and
the residuals.

To do this, we will need to learn something about non-parametric regression

X
y

X

2 / 100

Goals for Today
Develop local polynomial regression as a tool for modeling bivariate relationships. + Use
C+R Plots to diagnose unmodeled non-linearity.
Discuss non-linear transformations for fixing simple, monotone non-linearity.
Discuss polynomial regression for fixing non-linear relationships that are not simple and
monotone.

3 / 100

Parametric vs. Non-parametric
Our goal is to trace the dependence of on . Specifically, we usually want to get
something like:

We usually define to be "smooth".

The linear functional form - - is the "smoothest" of smooth function.

The above model is parametric, because we are estimating parameters that describe
relationship between and .

It is possible to characterize the relationship without estimating global parameters (i.e.,
parameters that apply to all of the observations equally) - what we call non-parametric
models.

y x

yi|xi = f(xi) + ei

f(⋅)

f(xi) = α + βxi

y x

4 / 100

Notes
Type notes here...

5 / 100

Global vs. Local Parametric Models
All of the models we will talk about below are locally parametric.

They fit a parametric model to a relatively small subset of the data.

The sum total of these many local parametric fits is a non-parametric fit - one that does
not impose the same functional form for all of the data.

Because these models remain locally parametric, we can usually use information from the
many local models to derive standard errors for the fit. (More on this later)

6 / 100

Notes
Type notes here...

7 / 100

Local Polynomial Regression
To estimate the local polynomial regression between and , start with the smallest unique
value of , call it , and you would estimate:

for the of the observations closest to . Let's say for the sake or argument
that the .

Find the of the points closes to by calculating and then taking
the smallest values of .

For the observations in the subsample, calculate the scaled distance such that
. This makes the largest distance in the subsample equal to 1.

y x

x x0

yiwi = β0 + β1xiwi + β2x
2
iwi + εiwi

span × 100% x0

span = 0.5

50% x0 di = |xi − x0|
50% di

~
d i =

di
max(di)

8 / 100

Notes
Type notes here...

9 / 100

Calculate the weights for the subset
using the tricube weight function.

 for observations outside the subset will
be 0.

Local Polynomial Regression II

wi = (1 −
~
d

3
)

3

wi

10 / 100

Notes
Type notes here...

11 / 100

Robustness Weighting in LPR
Fit the local regressions using weights
Calculate the residuals
Determine the median of the absolute values of the residuals
Find the robustness weights (with the Bisquare weight function):

where:

Repeat the loess procedure using weights
Repeat steps 2-5 until the loess model converges.

wi

ε̂ i = yi − ŷ i
q̂ .5

ri = B()
ε̂ i

6q̂ .5

B(u) = {
(1 − u2)2, if |u| < 1;

0, otherwise.

riwi

12 / 100

Notes
Type notes here...

13 / 100

Bisquare Weighting Function
What does the bisquare weight function look like?

14 / 100

Notes
Type notes here...

15 / 100

Choosing the Span
The choice of span (i.e., the number of points included in each local model) - this
encapsulates the bias-variance tradeoff.

A bigger span can induce bias which results in a non-parametric estimate that is not
faithful to the local patterns in the data
A smaller span can exhibit considerable variability while sticking very closely to the local
pattern in the data. Overfitting is a potential problem here.

Overfitting is not necessarily a problem if we only care about the relationship in this sample.
However, if we are (either explicitly or implicitly) trying to say something about a population
with the sample, then overfitting can be a real problem.

16 / 100

Notes
Type notes here...

17 / 100

Choosing Polynomial Degree and Weight
Function
Polynomial Degree:

Higher degree polynomials are more likely to overfit the data.
The most common advice is to set the polynomial degree to 2 and adjust the span to
generate the required smoothness of fit.

Weight Function:

The default in R is the tricube weight function.
There is little reason to change this as it generally has a relatively small effect on the
overall estimate.

18 / 100

Notes
Type notes here...

19 / 100

LPR in R
There are two different versions of this type of regression: Loess and Lowess.

In R, The important difference between these two is that Loess can take multiple
predictors (i.e., multiple nonparametric regression) whereas Lowess only takes 1.
Further, the user has much more control over loess than lowess, so we spend time on
the former.

Both loess and lowess are in the stats package that comes with every distribution
of R.
The robustness weighting is done by specifying family = symmetric in the loess
command. Otherwise, if family = gaussian, no robustness weighting (only
distance weighting) will be done.

20 / 100

Notes
Type notes here...

21 / 100

Loess Graph

22 / 100

Notes
Type notes here...

23 / 100

Interpretation of Non-Parametric Fits
Often, we are tempted to impose some meaning on small bumps and dips in the local fit. As
Keele (2007) suggests - "it is a temptation analysis should resist.''

It is often useful to consider the overall general pattern in the data and if there appears
to be a pattern that can be modeled parametrically - impose that fit and assess the
difference between the parametric and non-parametric models (more on this later).

24 / 100

Notes
Type notes here...

25 / 100

Plotting the LOESS curve
ggplot(Prestige, aes(x=income, y=prestige)) +
 stat_smooth(method="loess",
 span=.75,
 geom="line",
 method.args=list(
 family="symmetric")) +
 geom_point(pch=1) +
 theme_bw() +
 mytheme() +
 labs(x="Income",
 y="Prestige")

26 / 100

Notes
Type notes here...

27 / 100

Non-linearity
The assumption that the average error is everywhere zero implies that the regression
surface accurately reflects the dependency of on the 's

We can see this as linearity in the broad sense
i.e., non-linearity refers to a partial relationship between two variables that is not
summarized by a straight line, but it could also refer to situations when two variables
specified to have additive effects actually interact.

Violating this assumption implies that the model fails to account for a systematic
pattern between and the 's
Often models characterized by this violation will still provide a useful approximation
of the pattern in the data, but they can also be misleading

It is impossible to directly view the regression surface when more than two predictors are
specified, but we can employ
partial residual plots to assess non-linearity.

E(ε)
Y X

Y X

28 / 100

Notes
Type notes here...

29 / 100

Partial-Residual Plots (C+R plots)
The partial residual for the explanatory variable from a multiple regression is

This simply adds the linear component of the partial regression between and
(which may be characterized by a non-linear component)
to the least squares residuals
The "partial residuals" are plotted versus , meaning that is the slope of the
multiple simple regression of on
A non-parametric smooth helps assess whether the linear trend adequately captures the
partial relationship between and .

jth

E
(j)
i = Ei + BjXij

Y Xj

E (j) Xj Bj

E (j) Xj

Y X

30 / 100

Notes
Type notes here...

31 / 100

Example: The Canadian Prestige Data
data(Prestige)
Prestige$income <- Prestige$income/1000
Prestige.model<-lm(prestige ~
 income + education +
 women, data=Prestige)
crPlot(Prestige.model, "income")
crPlot(Prestige.model, "education")
crPlot(Prestige.model, "women")

32 / 100

Notes
Type notes here...

33 / 100

Testing Non-linearity with CR Plots
While this is not a substitute for looking at the graphs, I have written a couple of functions
that will allow you to use an F-test to evaluate significant departures from linearity.

There is an option to use automatic span selection through wither AICc or GCV - both of
which we'll talk about next lecture.

library(DAMisc)
crTest(Prestige.model, adjust.method="holm")

RSSp RSSnp DFnum DFdenom F p
income 6033.57 5107.50 2.356 97.644 7.514 0.001
education 6033.57 5740.21 1.235 98.765 4.088 0.075
women 6033.57 5909.90 1.366 98.634 1.511 0.227

34 / 100

Notes
Type notes here...

35 / 100

Inference for Nonparametric Models
In the example above, we are testing the local polynomial regression against the straight
line in the CR Plot. The main issue is figuring out the degrees of freedom for the LPR.

We know in OLS:

 and
 is symmetric and idempotent so

Residual variance is where the denominator is the residual degrees of

freedom.

ŷ = Hy dfmodel = tr(H)
H tr(H) = tr(HH′)

e′e
tr[(I−H)′(I−H)]

36 / 100

Notes
Type notes here...

37 / 100

Degrees of Freedom II
In LPR, , we have three different degrees of freedom estimates based on the OLS
properties from above:

 (df model)

 (df model)

 (df residual), so would be the
model df.

Each provides a potentially different number with none being particularly preferred over the
other.

y = Sy

tr(S)

tr(SS
′)

tr[(I − S)′(I − S)] = n − tr(2S + SS
′) tr(2S − SS

′)

38 / 100

Notes
Type notes here...

39 / 100

F-Tests and Nonparametric Models
We can perform an incremental -tests for a local polynomial model versus a linear model
with:

This statistic follows and distribution with numerator and
denominator degrees of freedom.

F

F =

RSSlinear−RSSloess

tr(S)−2

RSSloess

n−tr(S)

F tr(S) − 2 n − tr(S)

40 / 100

Notes
Type notes here...

41 / 100

Example
linmod <- lm(prestige ~ income, data=Prestige)
lomod <- loess(prestige ~ income, data=Prestige, span = .5)
testLoess(linmod, lomod)

F = 3.6
Pr(> F) = 0.002
LOESS preferred to alternative

42 / 100

Notes
Type notes here...

43 / 100

Two Dimensions of Nonlinearity
Simple vs. Complex

Simple means the curvature of the function relating to does not change direction
(i.e., there is no inflection point).
Complex means that there is an inflection point.

Monotone vs Non-monotone

Monotone means that as increases the function relating to never decreases or
increases the function relating to never increases, depending on the nature of the
function.

x y

x x y x

x y

44 / 100

Notes
Type notes here...

45 / 100

Handling Non-linearity: Common Strategies
Simple, monotone

Transformations of and/or

Complicated Non-linearity

Polynomial Regression
If pattern has too many turns, polynomials tend to oversmooth peaks
Regression Splines
More complicated non-parametric models.

Y X

46 / 100

Notes
Type notes here...

47 / 100

The direction of the bulge indicates the
appropriate type of power
transformation for and/or
A bulge to the top left of the scatterplot
suggests transforming up the ladder
of powers and/or down the ladder of
powers will straighten the relationship

Transformable Non-linearity: Bulging rule

Y X

Y
X

48 / 100

Notes
Type notes here...

49 / 100

Maximum Likelihood Transformation Methods
Although the ad hoc methods for assessing non-linearity are usually effective, there are
more sophisticated techniques based on maximum likelihood estimation

These techniques embed the usual multiple-regression model in a more general non-
linear model that contains (a) parameter(s) for the transformation(s)
The transformation parameter is estimated simultaneously with the usual regression
parameters by maximizing the likelihood and this obtaining MLEs:

If (i.e., there is no transformation), a likelihood ratio test, Wald test, or score test
of can assess whether the transformation is required
If several variables need to be transformed, several such parameters need to be
included

λ

L(λ,α,β1, … ,βk,σ2
ε)

λ = λ0

H0 : λ = λ0

50 / 100

Notes
Type notes here...

51 / 100

Box-Tidwell Transformation of the 's (1)
Maximum likelihood can also be used to find an appropriate linearizing transformation
for the variables

The Box-Tidwell model is a non-linear model that estimates transformation parameters
for the 's simultaneously with the regular parameters

where the errors are : and the are positive

Explicit in this model is a power transformation of each of the 's

Of course, we would not want to transform dummy variables and the like, so we should
not attempt to estimate transformation parameters for them

X

X

X

Yi = α + β1X
γ1

i1 + ⋯ + βkX
γk
ik + εi

iid ε ∼ N (0,σ2
εIn) Xij

X

52 / 100

Notes
Type notes here...

53 / 100

Box-Tidwell Transformation of the 's (2)
The Box and Tidwell procedure yields a constructed variable diagnostic in the following way:

Regress on the 's and obtain .
Regress on the 's and the constructed variables
to
obtain
The constructed variables are used to assess the need for a transformation of by
testing the null hypothesis
 where
A preliminary estimate of the transformation parameter is given by

where is the coefficient on from the original equation in step 1

Steps 1,2, and 4 are iterated until the transformation parameters converge

X

Y X A,B1, … ,Bk

Y X X1 logeX1, … ,Xk logeXk

A′,B′
1, … ,B′

k,D1, … ,Dk

Xj

H0 : δj = 0 Dj = δ̂ j
γj

~γj = 1 +
Dj

Bj

Bj Xj

54 / 100

Notes
Type notes here...

55 / 100

Box-Tidwell transformation Example: Prestige
Data

The statistically significant score test indicates that a transformation is needed for
income
The MLE of Power suggests that income should be transformed by a power of -0.037
(suggesting the log might work well)

data(Prestige)
boxTidwell(prestige ~ income ,
 ~ education + women, data=Prestige)

MLE of lambda Score Statistic (z) Pr(>|z|)
0.08073 -4.8338 1.339e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

iterations = 10

56 / 100

Notes
Type notes here...

57 / 100

Testing the Transformations
If you wanted to test whether the transformations were "close enough", you could just re-
run the Box-Tidwell function on the new model with the transformed variables.

If the transformations you provided (e.g., the log instead of -0.03) were good enough,
then the transformation powers on the new data should be insignificant.

Notice that the p-value is

boxTidwell(prestige ~ log(income),
 ~ education + women, data=Prestige)

MLE of lambda Score Statistic (z) Pr(>|z|)
1.76 0.6638 0.5068

iterations = 5

> 0.05

58 / 100

Notes
Type notes here...

59 / 100

Sometimes, the log transform is not the
most useful because a variable has lots of
zeros and you don't want to add a
constant to all counts. The IHS
transformation is a good alternative.

Inverse Hyperbolic Sine Transformation

IHS(x) =

=

sinh−1(θx)

θ

log(θx + log(θx2 + 1)())
1
2

θ

60 / 100

Notes
Type notes here...

61 / 100

Using the IHS Transform

The IHS transform will also work with the effects and ggeffects packages.

IHS <- function(x,theta = 1){asinh(theta*x)/theta}
trans.mod2 <- lm(prestige ~ IHS(income) + education+
women, data=Prestige)
summary(trans.mod2)

Call:
lm(formula = prestige ~ IHS(income) + education + women, data = Prestige)

Residuals:
Min 1Q Median 3Q Max
-17.364 -4.429 -0.101 4.316 19.179

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -120.2805 16.1459 -7.450 3.72e-11 ***
IHS(income) 13.4382 1.9138 7.022 2.90e-10 ***
education 3.7305 0.3544 10.527 < 2e-16 ***
women 0.0469 0.0299 1.568 0.12

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.093 on 98 degrees of freedom
Multiple R-squared: 0.8351, Adjusted R-squared: 0.83
F-statistic: 165.4 on 3 and 98 DF, p-value: < 2.2e-16

62 / 100

Notes
Type notes here...

63 / 100

ggeffect plot
library(ggeffects)
ggpredict(trans.mod2, terms="income") %>%
 ggplot(aes(x=x, y=predicted)) +
 geom_ribbon(aes(ymin=conf.low,
 ymax=conf.high),
 alpha=.25, fill="#4F2683") +
 geom_line(col="#4F2683") +
 theme_bw() +
 mytheme() +
 labs(x="Income", y="Predicted Prestige")

64 / 100

Notes
Type notes here...

65 / 100

Yeo-Johnson Transformation
The Y-J transform is also an alternative when the variable of interest has negative or zero
values. The transformation (with the parameter) is as follows:λ = [0, 2]

y
(λ)

i =

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

((yi + 1)λ − 1)/λ if λ ≠ 0, y ≥ 0

log(yi + 1) if λ = 0, y ≥ 0

−[(−yi + 1)(2−λ) − 1]/(2 − λ) if λ ≠ 2, y < 0

− log(−yi + 1) if λ = 2, y < 0

66 / 100

Notes
Type notes here...

67 / 100

Y-J vs IHS

68 / 100

Notes
Type notes here...

69 / 100

Finding Optimal Values of λ
summary(yj_trans(prestige ~ income + education +
women + type, data=Prestige,
trans.vars=c("income"), round.digits=3))

Call:
lm(formula = form, data = data)

Residuals:
Min 1Q Median 3Q Max
-13.8760 -4.0575 0.5504 4.2132 16.6404

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -115.69605 18.80605 -6.152 1.96e-08 ***
yeo.johnson(income, 0) 14.65764 2.31198 6.340 8.43e-09 ***
education 2.97382 0.60206 4.939 3.49e-06 ***
women 0.08381 0.03223 2.601 0.0108 *
typeprof 5.29196 3.55588 1.488 0.1401
typewc -3.21579 2.40657 -1.336 0.1848

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.44 on 92 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.8654, Adjusted R-squared: 0.8581
F-statistic: 118.3 on 5 and 92 DF, p-value: < 2.2e-16

70 / 100

Notes
Type notes here...

71 / 100

Box-Cox Transformation of
The Box-Cox transformation of functions to normalize the error distribution, stabilize the
error variance and straighten the relationship of to the 's
The general Box-Cox model is:

where and

If =1, no transformation is necessary
Note that all of the must be positive

Y

Y
Y X

Y λ
i = α + β1Xi1 + ⋯ + βkXik + εi

εi ∼ N (0,σ2
ε)

Y λ
i = {

, for λ ≠ 0

loge Yi, for λ = 0

Y λ
i −1

λ

λ
Yi

72 / 100

Notes
Type notes here...

73 / 100

Box-Cox Transformation Example: Ornstein
Data (1)
library(car)
data(Ornstein)
optpwr <- powerTransform(I(interlocks + 1) ~ log(assets) +
 sector + nation, data=Ornstein)
summary(optpwr)

bcPower Transformation to Normality
Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
Y1 0.2227 0.22 0.126 0.3193

Likelihood ratio test that transformation parameter is equal to 0
(log transformation)
LRT df pval
LR test, lambda = (0) 19.75696 1 8.7941e-06

Likelihood ratio test that no transformation is needed
LRT df pval
LR test, lambda = (1) 243.4049 1 < 2.22e-16

74 / 100

You can then run the model with the
optimized parameter from the previous
slide:

Model

λ

mod <- lm(bcPower(I(interlocks + 1), optpwr$roundlam) ~
 log(assets) + sector + nation, data=Ornstein)
S(mod, brief=TRUE)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.17047 0.58490 -3.711 0.000258 ***
log(assets) 0.73699 0.08089 9.112 < 2e-16 ***
sectorBNK -0.26138 0.61547 -0.425 0.671461
sectorCON -0.59772 0.64389 -0.928 0.354213
sectorFIN 0.05439 0.40505 0.134 0.893293
sectorHLD -0.45594 0.54763 -0.833 0.405935
sectorMAN -0.02196 0.28093 -0.078 0.937775
sectorMER 0.12710 0.36024 0.353 0.724542
sectorMIN 0.38246 0.29021 1.318 0.188843
sectorTRN 0.43596 0.39201 1.112 0.267232
sectorWOD 0.63923 0.36788 1.738 0.083600 .
nationOTH -0.31476 0.36648 -0.859 0.391292
nationUK -0.51269 0.36460 -1.406 0.161007
nationUS -1.17941 0.20387 -5.785 2.31e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard deviation: 1.337 on 234 degrees of freedom
Multiple R-squared: 0.5051
F-statistic: 18.37 on 13 and 234 DF, p-value: < 2.2e-16
AIC BIC
863.49 916.20

75 / 100

Notes
Type notes here...

76 / 100

Other Transformations
We talked about the IHS and Y-J transforms above, both of which permit negative values.
Hawkins and Weisberg (2017) developed a new version of the Box-Cox transform that allows
negative values. This distribution has two parameters and .

where

λ γ

BCN(xi) = {
log(.5(xi + si)) if λ ≈ 0

if |λ| > 0
(0.5(xi+si))λ

λ

si = √x2
i + γ2

77 / 100

Notes
Type notes here...

78 / 100

Example of Other Power Transforms
p1 <- powerTransform(I(interlocks + 1) ~ log(assets) +
 nation + sector, data=Ornstein)
p2 <- powerTransform(interlocks ~ log(assets) +
 nation + sector, data=Ornstein, family="yj
p3 <- powerTransform(interlocks ~ log(assets) +
 nation + sector, data=Ornstein, family="bc
m1 <- lm(bcPower(I(interlocks +1), p1$roundlam) ~
 log(assets) + nation + sector, data=Ornstein)
m2 <- update(m1, yjPower(interlocks, p2$roundlam) ~ .)
m3 <- update(m1, bcnPower(interlocks,
 p3$roundlam, gamma=p3$gamma) ~ .)

cis <- bind_rows(
 as.data.frame(confint(m1)),
 as.data.frame(confint(m2)),
 as.data.frame(confint(m3)))

df <- tibble(
 b = c(coef(m1), coef(m2), coef(m3)),
 lower = cis[,1],
 upper = cis[,2],
 model = factor(rep(1:3, each=length(coef(m1))),
 labels=c("BC", "YJ", "BCN")),
 var = factor(rep(1:length(coef(m1)), 3),
 labels=names(coef(m1)))
)

ggplot(df, aes(y=var, x=b, colour=model)) +
 geom_point(size=2, position = position_dodge(.5)) +
 geom_errorbarh(aes(xmin=lower, xmax=upper),
 position = position_dodge(.5),
 height=0) +
 scale_colour_manual(values = pal3) +
 theme_bw() +
 mytheme() +
 labs(x="Coefficient (95% CI)", y="")

79 / 100

Notes
Type notes here...

80 / 100

Figure

81 / 100

CR Plots

82 / 100

Notes
Type notes here...

83 / 100

Polynomial Regression
Two or more regressors of ascending power (i.e., linear, quadratic and cubic terms) are
used to capture the effects of a single variable

For every bend in the curve, we add another term to the model, going up in power each
time
Polynomial models are linear in the parameters even though they are non-linear in the
variables

Order Equation

First

Second

Third

Y = α + β1X

Y = α + β1X + β2X
2

Y = α + β1X + β2X
2 + β3X

3

84 / 100

Notes
Type notes here...

85 / 100

Polynomial equations: How to choose the
order
It is initially useful to look at the bends in a smooth of the scatterplot or partial residual plot

If there is only one, a second order polynomial should be tried. For each extra bulge, we
go up one in order
A good strategy is to start with one more than you think the model needs and drop the
term if it is not statistically significant
Incremental -tests can be used to help pick the "right" order to use in the equation

If the term is not statistically significant, it is usually advisable to delete the term from
the model - we want as few order terms as possible

For orthogonal polynomials, t-tests can be used

If the order is too high, however, the results will not be easy to interpret (higher than third
order is rarely used)

F

86 / 100

Notes
Type notes here...

87 / 100

Orthogonal Polynomials: Prestige
One can fit a polynomial regression by calculating the regressors individually and adding
them to the regression equation - i.e., calculate and add a quadratic term and a cubic
term
 manually.

Orthogonal Polynomials can be added in a much more simple - and better - way in R,
however, by specifying a poly function of the variable.
Non-orthogonal polynomials can be specified with the raw=T argument to poly.
The order of the polynomial is specified after the variable name: eg poly(income, 3)

Note, in R, the poly() function doesn't allow missing values.

X2

X3

88 / 100

Notes
Type notes here...

89 / 100

Orthogonalizing Regressors
It is possible to orghotonalize the power regressors before fitting the model, below is an
example for a degree polynomial.

Create
Use as the value for the first-degree term.
Regress the and on and create residuals and , respectively. Use as
the value for the second-degree term
Regress on and and use the residuals from that equation (call them) as
the third degree term.

This is not exactly what poly in R does, but the idea is similar. poly() also does some other
normalization, so results using the above method, while equivalent in model fit terms will
generate different coefficient estimates.

3rd

(p1, p2, p3) = (X,X2,X3)
p1

p2 p3 p1 e
(1)
2 e

(1)
3 e

(1)
2

e
(1)
3 p1 e

(1)
2 e

(2)
3

90 / 100

Notes
Type notes here...

91 / 100

After evaluating the degree
polynomial in education, it appears
only two of those terms are needed.
The third degree term is significant at
the 0.1 level, so you might leave it in,
but it would be a judgment call.
Since the degree term for women is
significant we would have to leave in
the first degree term as well. The
inclusion of the first degree term allows
the function to be non-monotonic.

Regression Output
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -62.910 15.916 -3.953 0.000149 ***
log(income) 12.672 1.836 6.901 5.74e-10 ***
poly(education, 3)1 106.494 9.284 11.471 < 2e-16 ***
poly(education, 3)2 15.045 6.977 2.156 0.033577 *
poly(education, 3)3 -13.348 6.984 -1.911 0.058972 .
poly(women, 2)1 11.978 9.384 1.276 0.204893
poly(women, 2)2 18.465 6.828 2.704 0.008110 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard deviation: 6.721 on 95 degrees of freedom
Multiple R-squared: 0.8564
F-statistic: 94.46 on 6 and 95 DF, p-value: < 2.2e-16
AIC BIC
686.89 707.89

3rd

2nd

92 / 100

Notes
Type notes here...

93 / 100

Effect Display for Income
ggpredict(mod, "income [n=25]") %>%
 ggplot(aes(x=x, y=predicted)) +
 geom_ribbon(aes(ymin=conf.low,
 ymax=conf.high),
 alpha=.25, fill="#4F2683") +
 geom_line(col="#4F2683") +
 theme_bw() +
 mytheme() +
 labs(x="Average Income of Incumbents",
 y="Predicted Prestige")

94 / 100

Notes
Type notes here...

95 / 100

Effect Display for Women
ggpredict(mod, "women [n=25]") %>%
 ggplot(aes(x=x, y=predicted)) +
 geom_ribbon(aes(ymin=conf.low,
 ymax=conf.high),
 alpha=.25, fill="#4F2683") +
 geom_line(col="#4F2683") +
 theme_bw() +
 mytheme() +
 labs(x="% Women Incumbents",
 y="Predicted Prestige")

96 / 100

Notes
Type notes here...

97 / 100

Effect Display for Education
ggpredict(mod, "education [n=25]") %>%
 ggplot(aes(x=x, y=predicted)) +
 geom_ribbon(aes(ymin=conf.low,
 ymax=conf.high),
 alpha=.25, fill="#4F2683") +
 geom_line(col="#4F2683") +
 theme_bw() +
 mytheme() +
 labs(x="Years of Education",
 y="Predicted Prestige")

98 / 100

Notes
Type notes here...

99 / 100

100 / 100

