
Regiejji^\ÊIII
Li\eaiiluÊII

DareÊAi[jli^\g

Diag\^ji\gÊN^\¾Li\eaiilu
Diagnosing non-linearity in relationships between continuous predictors is a bit more tricky.

We will use an analysis of the residuals to diagnose whether the relationship between 
and  is well-characterized by a line.

We will also need to figure out a flexible way to model the dependencies between  and
the residuals.

To do this, we will need to learn something about non-parametric regression

2 / 100

G^aZjÊf^iÊT^dau
Develop local polynomial regression as a tool for modeling bivariate relationships. + Use
C+R Plots to diagnose unmodeled non-linearity.
Discuss non-linear transformations for fixing simple, monotone non-linearity.
Discuss polynomial regression for fixing non-linear relationships that are not simple and
monotone.
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Paia[eliicÊrj¬ÊN^\¾faia[eliic
Our goal is to trace the dependence of  on . Specifically, we usually want to get
something likeÏ

We usually define  to be "smooth".

The linear functional form -  - is the "smoothest" of smooth function.

The above model is parametric, because we are estimating SaUameWeUV that describe
relationship between  and .

It is possible to characterize the relationship without estimating global parameters (i.e.,
parameters that apply to all of the observations equally) - what we call nRn-SaUameWUic
models.
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GZ^baZÊrj¬ÊL^caZÊPaia[eliicÊM^deZj
All of the models we will talk about below are lRcall\ parametric.

They fit a parametric model to a relatively small subset of the data.

The sum total of these many local parametric fits is a non-parametric fit - one that does
not impose the same functional form for all of the data.

Because these models remain locally parametric, we can usually use information from the
many local models to derive standard errors for the fit. (More on this later)
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L^caZÊP^Zu\^[iaZÊRegiejji^\
To estimate the local polynomial regression between  and , start with the smallest unique
value of , call it , and you would estimateÏ

for the  of the observations closest to . Let's say for the sake or argument
that the .

Find the  of the points closes to  by calculating  and then taking
the  smallest values of .

For the observations in the subsample, calculate the scaled distance such that 
. This makes the largest distance in the subsample equal to 1.
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Calculate the weights for the subset
using the tricube weight function.

 for observations outside the subset will
be 0.

L^caZÊP^Zu\^[iaZÊRegiejji^\ÊII
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R^bmjl\ejjÊWeighli\gÊi\ÊLPR
Fit the local regressions using weights 
Calculate the residuals 
Determine the median of the absolute values of the residuals 
Find the robustness weights (with the Bisquare weight function)Ï

whereÏ

Repeat the loess procedure using weights 
Repeat steps 2-Ê until the loess model converges. 12 / 100
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BijhmaieÊWeighli\gÊFm\cli^\
What does the bisquare weight function look likeÔ
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Ch^^ji\gÊlheÊSfa\
The choice of VSan (i.e., the number of points included in each local model) - this
encapsulates the bias-variance tradeoff.

A bigger span can induce bias which results in a non-parametric estimate that is not
faithful to the local patterns in the data
A smaller span can exhibit considerable variability while sticking very closely to the local
pattern in the data. Overfitting is a potential problem here.

Overfitting is not necessarily a problem if we Rnl\ care about the relationship in this sample.
However, if we are (either explicitly or implicitly) trying to say something about a population
with the sample, then overfitting can be a real problem.
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Ch^^ji\gÊP^Zu\^[iaZÊDegieeÊa\dÊWeighl
Fm\cli^\
Polynomial DegreeÏ

Higher degree polynomials are more likely to overfit the data.
The most common advice is to set the polynomial degree to 2 and adjust the span to
generate the required smoothness of fit.

Weight FunctionÏ

The default in R is the WUicXbe weight function.
There is little reason to change this as it generally has a relatively small effect on the
overall estimate.
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LPRÊi\ÊR
There are two different versions of this type of regressionÏ Loess and Lowess.

In R, The important difference between these two is that Loess can take multiple
predictors (i.e., multiple nonparametric regression) whereas Lowess only takes 1.
Further, the user has much more control over loess than lowess, so we spend time on
the former.

Both loess and lowess are in the stats package that comes with every distribution
of R.
The robustness weighting is done by specifying family í symmetric in the loess
command. Otherwise, if family í gaussian, no robustness weighting (only
distance weighting) will be done.

20 / 100



N^lej
Type notes here...

21 / 100

L^ejjÊGiafh

22 / 100

N^lej
Type notes here...

23 / 100

I\leifielali^\Ê^fÊN^\¾Paia[eliicÊFilj
Often, we are tempted to impose some meaning on small bumps and dips in the local fit. As
Keele (200Ì) suggests - "it is a temptation analysis should resist.''

It is often useful to consider the overall general pattern in the data and if there appears
to be a pattern that can be modeled parametrically - impose that fit and assess the
difference between the parametric and non-parametric models (more on this later).
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PZ^lli\gÊlheÊLOESSÊcmire
ggplot¢Prestige, aes¢xíincome, yíprestige££ é 
 stat¡smooth¢methodí"loess", 
             spaní.75, 
             geomí"line",
             method.argsílist¢
               familyí"symmetric"££ é
  geom¡point¢pchí1£ é 
  theme¡bw¢£ é 
  mytheme¢£ é 
  labs¢xí"Income", 
       yí"Prestige"£
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N^\¾Zi\eaiilu
The assumption that the average error  is everywhere zero implies that the regression
surface accurately reflects the dependency of  on the 's

We can see this as linearity in the broad sense
i.e., non-linearity refers to a partial relationship between two variables that is not
summarized by a straight line, but it could also refer to situations when two variables
specified to have additive effects actually interact.

Violating this assumption implies that the model fails to account for a systematic
pattern between  and the 's
Often models characterized by this violation will still provide a useful approximation
of the pattern in the data, but they can also be misleading

It is impossible to directly view the regression surface when more than two predictors are
specified, but we can employ SaUWial UeVidXal SlRWV to assess non-linearity.
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PailiaZ¾RejidmaZÊPZ^ljÊºCÖRÊfZ^lj»
The partial residual for the  explanatory variable from a multiple regression is

This simply adds the linear component of the partial regression between  and 
(which may be characterized by a non-linear component) to the least squares residuals
The "partial residuals"  are plotted versus , meaning that  is the slope of the
multiple simple regression of  on 
A non-parametric smooth helps assess whether the linear trend adequately captures the
partial relationship between  and .
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Eta[fZe¦ÊTheÊCa\adia\ÊPiejligeÊDala
data¢Prestige£
PrestigeÝincome î� PrestigeÝincome¨1000
Prestige.modelî�lm¢prestige ò 
  income é education é
    women, dataíPrestige£
crPlot¢Prestige.model, "income"£
crPlot¢Prestige.model, "education"£
crPlot¢Prestige.model, "women"£
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Tejli\gÊN^\¾Zi\eaiiluÊsilhÊCRÊPZ^lj
While this is not a substitute for looking at the graphs, I have written a couple of functions
that will allow you to use an F-test to evaluate significant departures from linearity.

There is an option to use automatic span selection through wither AICc or GCV - both of
which we'll talk about next lecture.

lib-a-4¢DAMisc£
crTest¢Prestige.model, adjust.methodí"holm"£

³³              RSSp   RSSnp DFnum DFdenom     F     p
³³ income    6033.57 5107.50 2.356  97.644 7.514 0.001
³³ education 6033.57 5740.21 1.235  98.765 4.088 0.075
³³ women     6033.57 5909.90 1.366  98.634 1.511 0.227
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I\feie\ceÊf^iÊN^\faia[eliicÊM^deZj
In the example above, we are testing the local polynomial regression against the straight
line in the CR Plot. The main issue is figuring out the degrees of freedom for the LPR.

We know in OLSÏ

 and 
 is symmetric and idempotent so 

Residual variance is  where the denominator is the residual degrees of

freedom.
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DegieejÊ^fÊFieed^[ÊII
In LPR, , we have three different degrees of freedom estimates based on the OLS
properties from aboveÏ

 (df model)

 (df model)

 (df residual), so  would be the
model df.

Each provides a potentially different number with none being particularly preferred over the
other.
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F¾TejljÊa\dÊN^\faia[eliicÊM^deZj
We can perform an incremental -tests for a local polynomial model versus a linear model
withÏ

This statistic follows and  distribution with  numerator and 
denominator degrees of freedom.
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Eta[fZe
linmod î� lm¢prestige ò income, dataíPrestige£
lomod î� loess¢prestige ò income, dataíPrestige, span í .5£
testLoess¢linmod, lomod£

³³ F í 3.6
³³ Pr¢ ï F£ í 0.002
³³ LOESS preferred to alternative
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Ts^ÊDi[e\ji^\jÊ^fÊN^\Zi\eaiilu
Simple vs. Complex

Simple means the curvature of the function relating  to  does not change direction
(i.e., there is no inflection point).
Complex means that there is an inflection point.

Monotone vs Non-monotone

Monotone means that as  increases the function relating  to  never decreases or 
increases the function relating  to  never increases, depending on the nature of the
function.

44 / 100



N^lej
Type notes here...

4Ê / 100

Ha\dZi\gÊN^\¾Zi\eaiilu¦ÊC^[[^\ÊSlialegiej
SimpleÁ¶mono8one

Transformations of  and/or 

Complica8ed¶NonÂlinea6i8=

Polynomial Regression
If pattern has too many turns, polynomials tend to oversmooth peaks
Regression Splines
More complicated non-parametric models.
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The direction of the bulge indicates the
appropriate type of power
transformation for  and/or 
A bulge to the top left of the scatterplot
suggests transforming  up the ladder
of powers and/or  down the ladder of
powers will straighten the relationship

Tia\jf^i[abZeÊN^\¾Zi\eaiilu¦ÊBmZgi\gÊimZe
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Mati[m[ÊLikeZih^^dÊTia\jf^i[ali^\ÊMelh^dj
Although the ad hRc methods for assessing non-linearity are usually effective, there are
more sophisticated techniques based on maximum likelihood estimation

These techniques embed the usual multiple-regression model in a more general non-
linear model that contains (a) parameter(s) for the transformation(s)
The transformation parameter  is estimated simultaneously with the usual regression
parameters by maximizing the likelihood and this obtaining MLEsÏ 

If  (i.e., there is no transformation), a likelihood ratio test, Wald test, or score test
of  can assess whether the transformation is required
If several variables need to be transformed, several such parameters need to be
included
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B^t¾TidseZZÊTia\jf^i[ali^\Ê^fÊlheÊ °jÊº}»
Maximum likelihood can also be used to find an appropriate linearizing transformation
for the  variables

The Box-Tidwell model is a non-linear model that estimates transformation parameters
for the 's simultaneously with the regular parameters

where the errors are Ï  and the  are positive

Explicit in this model is a power transformation of each of the 's

Of course, we would not want to transform dummy variables and the like, so we should
not attempt to estimate transformation parameters for them
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B^t¾TidseZZÊTia\jf^i[ali^\Ê^fÊlheÊ °jÊº~»
The Box and Tidwell procedure yields a constructed variable diagnostic in the following wayÏ

Regress  on the 's and obtain .
Regress  on the 's and the constructed variables  to
obtain 
The constructed variables are used to assess the need for a transformation of  by
testing the null hypothesis  where 
A preliminary estimate of the transformation parameter  is given by

where  is the coefficient on  from the original equation in step 1

Steps 1,2, and 4 are iterated until the transformation parameters converge Ê4 / 100

N^lej
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B^t¾TidseZZÊlia\jf^i[ali^\ÊEta[fZe¦ÊPiejlige
Dala

The statistically significant score test indicates that a transformation is needed for
income
The MLE of Power suggests that income should be transformed by a power of -0.03Ì
(suggesting the log might work well)

data¢Prestige£
boxTidwell¢prestige ò income ,
           ò education é women, dataíPrestige£

³³  MLE of lambda Score Statistic ¢z£  Pr¢ï©z©£    
³³        0.08073             �4.8338 1.339e�06 ¬¬¬
³³ ���
³³ Signif. codes:  0 '¬¬¬' 0.001 '¬¬' 0.01 '¬' 0.05 '.' 0.1 ' ' 1
³³ 
³³ iterations í  10
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Tejli\gÊlheÊTia\jf^i[ali^\j
If you wanted to test whether the transformations were "close enough", you could just re-
run the Box-Tidwell function on the new model with the transformed variables.

If the transformations you provided (e.g., the log instead of -0.03) were good enough,
then the transformation powers on the new data should be insignificant.

Notice that the p-value is 

boxTidwell¢prestige ò log¢income£,
           ò education é women, dataíPrestige£

³³  MLE of lambda Score Statistic ¢z£ Pr¢ï©z©£
³³           1.76              0.6638   0.5068
³³ 
³³ iterations í  5
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Sometimes, the log transform is not the
most useful because a variable has lots of
zeros and you don't want to add a
constant to all counts. The IHS
transformation is a good alternative.

I\reijeÊHufeib^ZicÊSi\eÊTia\jf^i[ali^\
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Uji\gÊlheÊIHSÊTia\jf^i[

The IHS transform will also work with the effects and ggeffects packages.

IHS î� f0nc/ion¢x,theta í 1£¦asinh¢theta¬x£¨theta§
trans.mod2 î� lm¢prestige ò IHS¢income£ é educationé 
women, dataíPrestige£
summary¢trans.mod2£

³³ 
³³ Call:
³³ lm¢formula í prestige ò IHS¢income£ é education é women, data í Prestige£
³³ 
³³ Residuals:
³³     Min      1Q  Median      3Q     Max 
³³ �17.364  �4.429  �0.101   4.316  19.179 
³³ 
³³ Coefficients:
³³              Estimate Std. Error t value Pr¢ï©t©£    
³³ ¢Intercept£ �120.2805    16.1459  �7.450 3.72e�11 ¬¬¬
³³ IHS¢income£   13.4382     1.9138   7.022 2.90e�10 ¬¬¬
³³ education      3.7305     0.3544  10.527  î 2e�16 ¬¬¬
³³ women          0.0469     0.0299   1.568     0.12    
³³ ���
³³ Signif. codes:  0 '¬¬¬' 0.001 '¬¬' 0.01 '¬' 0.05 '.' 0.1 ' ' 1
³³ 
³³ Residual standard error: 7.093 on 98 degrees of freedom
³³ Multiple R�squared:  0.8351,    Adjusted R�squared:   0.83 
³³ F�statistic: 165.4 on 3 and 98 DF,  p�value: î 2.2e�16
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ggeffeclÊfZ^l
lib-a-4¢ggeffects£
ggpredict¢trans.mod2, termsí"income"£ åïå 
  ggplot¢aes¢xíx, yípredicted££ é 
  geom¡ribbon¢aes¢yminíconf.low, 
                  ymaxíconf.high£, 
              alphaí.25, fillí"³4F2683"£ é 
  geom¡line¢colí"³4F2683"£ é 
  theme¡bw¢£ é 
  mytheme¢£ é 
  labs¢xí"Income", yí"Predicted Prestige"£
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Ye^¾J^h\j^\ÊTia\jf^i[ali^\
The Y-J transform is also an alternative when the variable of interest has negative or zero
values. The transformation (with the parameter ) is as followsÏ
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Y¾JÊrjÊIHS
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Fi\di\gÊOfli[aZÊVaZmejÊ^fÊ
summary¢yj¡trans¢prestige ò income é education é 
women é type, dataíPrestige, 
trans.varsíc¢"income"£, round.digitsí3££

³³ 
³³ Call:
³³ lm¢formula í form, data í data£
³³ 
³³ Residuals:
³³      Min       1Q   Median       3Q      Max 
³³ �13.8760  �4.0575   0.5504   4.2132  16.6404 
³³ 
³³ Coefficients:
³³                          Estimate Std. Error t value Pr¢ï©t©£    
³³ ¢Intercept£            �115.69605   18.80605  �6.152 1.96e�08 ¬¬¬
³³ yeo.johnson¢income, 0£   14.65764    2.31198   6.340 8.43e�09 ¬¬¬
³³ education                 2.97382    0.60206   4.939 3.49e�06 ¬¬¬
³³ women                     0.08381    0.03223   2.601   0.0108 ¬  
³³ typeprof                  5.29196    3.55588   1.488   0.1401    
³³ typewc                   �3.21579    2.40657  �1.336   0.1848    
³³ ���
³³ Signif. codes:  0 '¬¬¬' 0.001 '¬¬' 0.01 '¬' 0.05 '.' 0.1 ' ' 1
³³ 
³³ Residual standard error: 6.44 on 92 degrees of freedom
³³   ¢4 observations deleted due to missingness£
³³ Multiple R�squared:  0.8654,    Adjusted R�squared:  0.8581 
³³ F�statistic: 118.3 on 5 and 92 DF,  p�value: î 2.2e�16
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B^t¾C^tÊTia\jf^i[ali^\Ê^fÊ
The Box-Cox transformation of  functions to nRUmali]e Whe eUURU diVWUibXWiRn, VWabili]e Whe
eUURU YaUiance and VWUaighWen Whe UelaWiRnVhiS of  to the 's
The general Box-Cox model isÏ

where  and

If Ò1, no transformation is necessary
Note that all of the  mXVW be positive
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B^t¾C^tÊTia\jf^i[ali^\ÊEta[fZe¦ÊOi\jlei\
DalaÊº}»
lib-a-4¢car£
data¢Ornstein£
optpwr î� powerTransform¢I¢interlocks é 1£  ò  log¢assets£ é 
                           sector é nation, dataíOrnstein£
summary¢optpwr£

³³ bcPower Transformation to Normality 
³³    Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
³³ Y1    0.2227        0.22        0.126       0.3193
³³ 
³³ Likelihood ratio test that transformation parameter is equal to 0
³³  ¢log transformation£
³³                            LRT df       pval
³³ LR test, lambda í ¢0£ 19.75696  1 8.7941e�06
³³ 
³³ Likelihood ratio test that no transformation is needed
³³                            LRT df       pval
³³ LR test, lambda í ¢1£ 243.4049  1 î 2.22e�16
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You can then run the model with the
optimized  parameter from the previous
slideÏ

M^deZ mod î� lm¢bcPower¢I¢interlocks é 1£, optpwrÝroundlam£ ò 
            log¢assets£ é sector é nation, dataíOrnstein£
S¢mod, briefíTRUE£

³³ Coefficients:
³³             Estimate Std. Error t value Pr¢ï©t©£    
³³ ¢Intercept£ �2.17047    0.58490  �3.711 0.000258 ¬¬¬
³³ log¢assets£  0.73699    0.08089   9.112  î 2e�16 ¬¬¬
³³ sectorBNK   �0.26138    0.61547  �0.425 0.671461    
³³ sectorCON   �0.59772    0.64389  �0.928 0.354213    
³³ sectorFIN    0.05439    0.40505   0.134 0.893293    
³³ sectorHLD   �0.45594    0.54763  �0.833 0.405935    
³³ sectorMAN   �0.02196    0.28093  �0.078 0.937775    
³³ sectorMER    0.12710    0.36024   0.353 0.724542    
³³ sectorMIN    0.38246    0.29021   1.318 0.188843    
³³ sectorTRN    0.43596    0.39201   1.112 0.267232    
³³ sectorWOD    0.63923    0.36788   1.738 0.083600 .  
³³ nationOTH   �0.31476    0.36648  �0.859 0.391292    
³³ nationUK    �0.51269    0.36460  �1.406 0.161007    
³³ nationUS    �1.17941    0.20387  �5.785 2.31e�08 ¬¬¬
³³ ���
³³ Signif. codes:  0 '¬¬¬' 0.001 '¬¬' 0.01 '¬' 0.05 '.' 0.1 ' ' 1
³³ 
³³ Residual standard deviation: 1.337 on 234 degrees of freedom
³³ Multiple R�squared: 0.5051
³³ F�statistic: 18.37 on 13 and 234 DF,  p�value: î 2.2e�16 
³³    AIC    BIC 
³³ 863.49 916.20
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OlheiÊTia\jf^i[ali^\j
We talked about the IHS and Y-J transforms above, both of which permit negative values.
Hawkins and Weisberg (201Ì) developed a new version of the Box-Cox transform that allows
negative values. This distribution has two parameters  and .

where 
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Eta[fZeÊ^fÊOlheiÊP^seiÊTia\jf^i[j
p1 î� powerTransform¢I¢interlocks é 1£ ò log¢assets£ é 
                       nation é sector, dataíOrnstein£
p2 î� powerTransform¢interlocks ò log¢assets£ é 
                       nation é sector, dataíOrnstein, familyí"yj
p3 î� powerTransform¢interlocks ò log¢assets£ é 
                       nation é sector, dataíOrnstein, familyí"bc
m1 î� lm¢bcPower¢I¢interlocks é1£, p1Ýroundlam£ ò 
           log¢assets£ é nation é sector, dataíOrnstein£
m2 î� update¢m1, yjPower¢interlocks, p2Ýroundlam£ ò .£
m3 î� update¢m1, bcnPower¢interlocks, 
                          p3Ýroundlam, gammaíp3Ýgamma£ ò .£

cis î� bind¡rows¢
  as.data.frame¢confint¢m1££, 
  as.data.frame¢confint¢m2££, 
  as.data.frame¢confint¢m3£££

df î� tibble¢
  b í c¢coef¢m1£, coef¢m2£, coef¢m3££, 
  lower í cis¤,1¥, 
  upper í cis¤,2¥,
  model í factor¢rep¢1:3, eachílength¢coef¢m1£££, 
                 labelsíc¢"BC", "YJ", "BCN"££, 
  var í factor¢rep¢1:length¢coef¢m1££, 3£, 
               labelsínames¢coef¢m1£££
£

ggplot¢df, aes¢yívar, xíb, colourímodel££ é 
  geom¡point¢sizeí2, position í position¡dodge¢.5££ é 
  geom¡errorbarh¢aes¢xminílower, xmaxíupper£, 
                 position í position¡dodge¢.5£, 
                 heightí0£ é 
  scale¡colour¡manual¢values í pal3£ é 
  theme¡bw¢£ é 
  mytheme¢£ é 
  labs¢xí"Coefficient ¢95å CI£", yí""£
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CRÊPZ^lj
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P^Zu\^[iaZÊRegiejji^\
Two or more regressors of ascending power (i.e., linear, quadratic and cubic terms) are
used to capture the effects of a single variable

For every bend in the curve, we add another term to the model, going up in power each
time
Polynomial models are linear in the parameters even though they are non-linear in the
variables

O6de6 Eq9a8ion

First

Second

Third
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P^Zu\^[iaZÊehmali^\j¦ÊH^sÊl^Êch^^jeÊlhe
^idei
It is initially useful to look at the bends in a smooth of the scatterplot or partial residual plot

If there is only one, a second order polynomial should be tried. For each extra bulge, we
go up one in order
A good strategy is to start with one more than you think the model needs and drop the
term if it is not statistically significant
Incremental -tests can be used to help pick the "right" order to use in the equation

If the term is not statistically significant, it is usually advisable to delete the term from
the model - we want as few order terms as possible

For orthogonal polynomials, t-tests can be used

If the order is too high, however, the results will not be easy to interpret (higher than third
order is rarely used)
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Oilh^g^\aZÊP^Zu\^[iaZj¦ÊPiejlige
One can fit a polynomial regression by calculating the regressors individually and adding
them to the regression equation - i.e., calculate and add a quadratic term  and a cubic
term  manually.

OUWhRgRnal PRl\nRmialV can be added in a much more simple - and better - way in R,
however, by specifying a poly function of the variable.
Non-orthogonal polynomials can be specified with the rawíT argument to poly.
The order of the polynomial is specified after the variable nameÏ eg poly¢income, 3£

Note, in R, the poly¢£ function doesn't allow missing values.
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Oilh^g^\aZixi\gÊRegiejj^ij
It is possible to orghotonalize the power regressors before fitting the model, below is an
example for a  degree polynomial.

Create 
Use  as the value for the first-degree term.
Regress the  and  on  and create residuals  and , respectively. Use  as
the value for the second-degree term
Regress  on  and  and use the residuals from that equation (call them ) as
the third degree term.

This is not exactly what poly in R does, but the idea is similar. poly¢£ also does some other
normalization, so results using the above method, while equivalent in model fit terms will
generate different coefficient estimates.
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After evaluating the  degree
polynomial in education, it appears
only two of those terms are needed.
The third degree term is significant at
the 0.1 level, so you might leave it in,
but it would be a judgment call.
Since the  degree term for women is
significant we would have to leave in
the first degree term as well. The
inclusion of the first degree term allows
the function to be non-monotonic.

Regiejji^\ÊOmlfml
³³ Coefficients:
³³                     Estimate Std. Error t value Pr¢ï©t©£    
³³ ¢Intercept£          �62.910     15.916  �3.953 0.000149 ¬¬¬
³³ log¢income£           12.672      1.836   6.901 5.74e�10 ¬¬¬
³³ poly¢education, 3£1  106.494      9.284  11.471  î 2e�16 ¬¬¬
³³ poly¢education, 3£2   15.045      6.977   2.156 0.033577 ¬  
³³ poly¢education, 3£3  �13.348      6.984  �1.911 0.058972 .  
³³ poly¢women, 2£1       11.978      9.384   1.276 0.204893    
³³ poly¢women, 2£2       18.465      6.828   2.704 0.008110 ¬¬ 
³³ ���
³³ Signif. codes:  0 '¬¬¬' 0.001 '¬¬' 0.01 '¬' 0.05 '.' 0.1 ' ' 1
³³ 
³³ Residual standard deviation: 6.721 on 95 degrees of freedom
³³ Multiple R�squared: 0.8564
³³ F�statistic: 94.46 on 6 and 95 DF,  p�value: î 2.2e�16 
³³    AIC    BIC 
³³ 686.89 707.89
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EffeclÊDijfZauÊf^iÊI\c^[e
ggpredict¢mod, "income ¤ní25¥"£ åïå 
  ggplot¢aes¢xíx, yípredicted££ é 
    geom¡ribbon¢aes¢yminíconf.low, 
                    ymaxíconf.high£, 
                alphaí.25, fillí"³4F2683"£ é 
    geom¡line¢colí"³4F2683"£ é
    theme¡bw¢£ é 
    mytheme¢£ é 
    labs¢xí"Average Income of Incumbents", 
         yí"Predicted Prestige"£
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EffeclÊDijfZauÊf^iÊW^[e\
ggpredict¢mod, "women ¤ní25¥"£ åïå 
  ggplot¢aes¢xíx, yípredicted££ é 
    geom¡ribbon¢aes¢yminíconf.low, 
                    ymaxíconf.high£, 
                alphaí.25, fillí"³4F2683"£ é 
    geom¡line¢colí"³4F2683"£ é
    theme¡bw¢£ é 
    mytheme¢£ é 
    labs¢xí"å Women Incumbents", 
         yí"Predicted Prestige"£
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EffeclÊDijfZauÊf^iÊEdmcali^\
ggpredict¢mod, "education ¤ní25¥"£ åïå 
  ggplot¢aes¢xíx, yípredicted££ é 
    geom¡ribbon¢aes¢yminíconf.low, 
                    ymaxíconf.high£, 
                alphaí.25, fillí"³4F2683"£ é 
    geom¡line¢colí"³4F2683"£ é
    theme¡bw¢£ é 
    mytheme¢£ é 
    labs¢xí"Years of Education", 
         yí"Predicted Prestige"£
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