
Regiejji^\ÊIII
B^^ljliaffi\g

DareÊAi[jli^\g

G^aljÊ^fÊlheÊLeclmie
Introduce the general idea of Resampling - techniques to resample from the original
data

An extended example of bootstrapping local polynomial regression models.

2 / ÎÍ

Reja[fli\g¦ÊA\ÊOreiries
Resampling techniques sample from the original dataset
Some of the applications of these methods areÏ

to compute standard errors and confidence intervals (either when we have small
sample sizes, dubious distributional assumptions or for a statistic that does not have
an easily derivable asymptotic standard error)
Subset selection in regression
Handling Missing Data

Selection of degrees of freedom in nonparametric regression (especially GAMs)

For the most part, this lecture will discuss resampling techniques in the context of
computing confidence intervals and hypothesis tests for regression analysis.
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Reja[fli\gÊa\dÊRegiejji^\¦ÊAÊCamli^\
There is no need whatsoever for bootstrapping in regression analysis if the OLS
assumptions are met

In such cases, OLS estimates are unbiased and maximally efficient.

There are situations, however, where we cannot satisfy the assumptions and thus other
methods are more helpful

Robust regression (such as MM-estimation) often provides better estimates than OLS in
the presence of influential cases, but only has reliable SEs asymptotically.
Local polynomial regression is often "better" (in the RSS sense) in the presence of non-
linearity, but because of the unknown df, only has approximate sampling distribution.
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B^^ljliaffi\g¦ÊGe\eialÊOreiries
If we assume that a random variable  or statistic has a particular population value, we can
study how a statistical estimator computed from samples behaves

We don't always know, however, how a variable or statistic is distributed in the population

For example, there may be a statistic for which standard errors have not been
formulated (e.g., imagine we wanted to test whether two additive scales have
significantly different levels of internal consistency - Cronbach's  doesn't have an exact
sampling distribution

Another example is the impact of missing data on a distribution - we don't know how
the missing data differ from the observed data

Bootstrapping is a technique for estimating standard errors and confidence intervals
(sets) without making assumptions about the distributions that give rise to the data
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B^^ljliaffi\g¦ÊGe\eialÊOreiriesÊº~»
Assume that we have a sample of size  for which we require more reliable standard errors
for our estimates

Perhaps  is small, or alternatively, we have a statistic for which there is no known
sampling distribution

The bootstrap provides one "solution"

StepsÏ

Take several new samples from the original sample, calculating the statistic each time
Calculate the average and standard error (and maybe quantiles) from the empirical
distribution of the bootstrap samples
We apply principles of inference similar to those employed when sampling from the
population
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B^^ljliaffi\g¦ÊGe\eialÊOreiriesÊº�»
There are several Variants of the bootstrap. The two we are most interested in areÏ

Nonparametric Bootstrap
No underlying population distribution is assumed
Most commonly used method

Parametric Bootstrap
Assumes that the statistic has a particular parametric form (e.g., normal)
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B^^ljliaffi\gÊlheÊMea\
Imagine, unrealistically, that we are interested in finding the confidence interval for the
mean of a sample of only 4 observations

Specifically, assume that we are interested in the difference in income between
husbands and wives

We have four cases, with the following mean differences (in Ö$Ý1000's)Ï Ë, -3, Ê, 3, for a
mean of 2.ÌÊ and a standard deviation of 4.031
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ClajjicalÊThe^iuÊSla\daidÊEii^i
From classical theory, we can calculate the standard errorÏ

Now we'll compare the confidence interval to the one calculated using bootstrapping
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Defi\i\gÊlheÊRa\d^[ÊVaiiable

Ë 0.2Ê

-3 0.2Ê

Ê 0.2Ê

3 0.2Ê

The mean of  is then simply the mean of the sampleÏ
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TheÊSa[fleÊajÊlheÊP^fmlali^\Êº}»
We now treat the sample as if it were the population, and resample from it

In this case, we take all possible samples with replacement, meaning that we take 
 different samples

Since we found all possible samples, the mean of these samples is simply the original
mean
We then determine the standard error of  from these samples

We now adjust for the sample sizeÏ
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TheÊSa[fleÊajÊlheÊP^fmlali^\Êº~»
In this example, because we used all possible resamples of our sample, the bootstrap
standard error (2.01ÊÊË4) is exactly the same as the original standard error
This approach can be used for statistics for which we do not have standard error
formulas, or we have small sample sizes
In summary, the following analogies can be made to sampling from the population

Bootstrap observations  original observations
Bootstrap Mean  original sample mean
Original sample mean  unknown population mean 
Distribution of the bootstrap means  unknown sampling distribution from the
original sample
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ChaiacleiijlicjÊ^fÊlheÊB^^ljliafÊSlalijlic
The bootstrap sampling distribution around the original estimate of the statistic  is
analogous to the sampling distribution of  around the population parameter 

The average of the bootstrapped statistics is simplyÏ

where  is the number of bootstraps
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BiajÊa\dÊVaiia\ce
The bias of  can be seen as its deviation from the bootstrap average (i.e., it estimates 

)

The estimated bootstrap variance of  isÏ
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B^^ljliaffi\gÊsilhÊLaigeiÊSa[flej
The larger the sample, the more effort it is to calculate the bootstrap estimates

With large sample sizes, the possible number of bootstrap samples  gets very large
and impractical (e.g., it would take a long time to calculate  bootstrap samples)
typically we want to take somewhere between 1000 and 2000 bootstrap samples in order
to find a confidence interval of a statistic

After calculating the standard error, we can easily find the confidence interval. Three
methods are commonly used

Normal Theory Intervals
Percentile Intervals
Bias Corrected, accelerated Percentile Intervals
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Eralmali\gÊC^\fide\ceÊI\leiralj
AccuracyÏ how quickly do coverage errors go to zeroÔ

 and 
 (second-order accurate)

 (first-order accurate)

Transformation RespectingÏ

For any monotone transformation of , , can we obtain the right confidence
interval on  with the confidence intervals on  mapped by Ô E.g.,
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N^i[alÊThe^iuÊI\leiralj
Many statistics are asymptotically normally distributed
Therefore, in large samples, we may be able to use a normality assumption to
characterize the bootstrap distribution. E.g.,

where  is 

This approach works well for the bootstrap confidence interval, but only if the bootstrap
sampling distribution is approximately normally distributed
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Peice\lileÊI\leiralj
Use percentiles of the bootstrap sampling distribution to find the end-points of the
confidence interval

The  percentile interval can be approximated withÏ

where  and  are the ordered (  ) bootstrap replicates such that  of
them fall below the former and  of them fall above the latter.

These intervals do not assume a normal distribution, but they do not perform well
unless we have a large original sample and at least 1000 bootstrap samples
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BCaÊI\leiralj
The  CI adjusts the confidence intervals for bias due to small samples by employing a
normalizing transformation through two correction factors.

Using strict percentile intervals, 

Here, 

 and 
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BiajÊc^iiecli^\

This just gives the inverse of the normal CDF for proportion of bootstrap replicates less
than .
Note that if  Ò 0.Ê, then .
If  is unbiased, the proportion will be close to 0.Ê, meaning that the correction is close
to 0.
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Acceleiali^\¦

 is the calculation of the original estimate  with each observation  jacknifed out in
turn.

 is 
The acceleration constant corrects the bootstrap sample for skewness.
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Eralmali^\ÊC^\fide\ceÊI\leiralj
No6mal Pe6cen8ile

Accuracy  order  order  order

Transofrmation-respecting No Yes Yes
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Nm[beiÊ^fÊBSÊSa[flej
Now, we can revisit the idea about the number of bootstrap samples.

The real question here is how precise to you want estimated quantities to be.
Often, we're trying to estimate the  confidence interval (so the  and 
percentiles of the distribution).
Estimating a quantity in the tail of a distribution with precision takes more observations.
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De[^\jliali^\
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B^^ljliaffi\gÊlheÊMedia\
set.seed(123£
n î- 25
x î- rchisq(n,1,1£
lib-a-4(boot£
set.seed(123£
med.fun î- f0nc/ion(x, inds£¦
    med î- median(x¤inds¥£
    med
§
boot.med î- boot(x, med.fun, Rí1000£
median(x£

³³ ¤1¥ 1.206853

meds î- boot.medÝt
t(summary(meds££

³³                                                                             
³³       V1 Min.   :0.2838   1st Qu.:0.6693   Median :1.2069   Mean   :1.2799  
³³                                           
³³       V1 3rd Qu.:1.7855   Max.   :3.7749
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MakeÊCIj
Normal Theory CIÏ

Percentile CIÏ

se î- sd(meds£
bias î- mean(meds£ - median(x£
norm.ci î- median(x£- bias  é qnorm((1é.95£¨2£¬se¬c(-1,1£

med.ord î- meds¤order(meds£¥
pct.ci î- med.ord¤c(25,975£¥
pct.ci î- quantile(meds, c(.025,.975££
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MakeÊCIjÊº~»
 CIÏ

zhat î- qnorm(mean(meds î median(x£££
medi î- sapply(1:n, f0nc/ion(i£median(x¤-i¥££
Tdot î- mean(medi£
ahat î- sum((Tdot-medi£ñ3£¨(6¬sum((Tdot-medi£ñ2£ñ(3¨2££
zalpha î- 1.96
z1alpha î- -1.96
a1 î- pnorm(zhat é ((zhat é zalpha£¨(1-ahat¬(zhat é zalpha££££
a2 î- pnorm(zhat é ((zhat é z1alpha£¨(1-ahat¬(zhat é z1alpha££££
bca.ci î- quantile(meds, c(a1, a2££
a1 î- floor(a1¬1000£
a2 î- ceiling(a2¬1000£
bca.ci î- med.ord¤c(a2, a1£¥
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Lo;e6 U44e6

Normal -0.0ÊË 2.324

Percentile 0.4Ì3 2.Í2Î

BCa 0.4Ì3 2.211

L^^ki\gÊalÊCIj
mat î- rbind(norm.ci, pct.ci, bca.ci£
rownames(mat£ î- c("Normal", "Percentile", "BCa"£
colnames(mat£ î- c("Lower", "Upper"£
³ print(xtable(mat£, digitsí4, typeí"html", 
³ html.table.attributes í "border í 0"£
knitr::kable(mat, digitsí3£

boot.ci(boot.med£

³³ BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
³³ Based on 1000 bootstrap replicates
³³ 
³³ CALL : 
³³ boot.ci(boot.out í boot.med£
³³ 
³³ Intervals : 
³³ Level      Normal              Basic         
³³ 95å   (-0.056,  2.324 £   (-0.415,  1.940 £  
³³ 
³³ Level     Percentile            BCa          
³³ 95å   ( 0.473,  2.829 £   ( 0.473,  2.211 £  
³³ Calculations and Intervals on Original Scale
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BSÊDiffeie\ceÊi\ÊC^iielali^\j
We can bootstrap the difference in correlations as well.

set.seed(123£
data(Mroz, packageí"carData"£
cor.fun î- f0nc/ion(dat, inds£¦
    tmp î- dat¤inds, ¥
    cor1 î- with(tmp¤which(tmpÝhc íí "no"£, ¥,
    cor(age, lwg, useí"complete"££
    cor2 î- with(tmp¤which(tmpÝhc íí "yes"£, ¥,
    cor(age, lwg, useí"complete"££
    c(cor1, cor2, cor2-cor1£
§
boot.cor î- boot(Mroz, cor.fun, Rí2000, strataíMrozÝhc£
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B^^ljliafÊC^\fide\ceÊI\leiralj
lib-a-4(DAMisc£
out1 î- tidy_boot_ci(boot.cor, typeí"perc", 
             term_names í c("R no HC", "R HC", "Difference"££
out1

³³ ³ A tibble: 3 x 4
³³   term       estimate conf.low conf.high
³³   îchrï         îdblï    îdblï     îdblï
³³ 1 R no HC    -0.00213 -0.0989     0.0823
³³ 2 R HC        0.0974  -0.00827    0.211 
³³ 3 Difference  0.0996  -0.0442     0.241

out2 î- tidy_boot_ci(boot.cor, typeí"bca", 
             term_names í c("R no HC", "R HC", "Difference"££
out2

³³ ³ A tibble: 3 x 4
³³   term       estimate conf.low conf.high
³³   îchrï         îdblï    îdblï     îdblï
³³ 1 R no HC    -0.00213 -0.0981     0.0831
³³ 2 R HC        0.0974  -0.00994    0.209 
³³ 3 Difference  0.0996  -0.0460     0.240

ÊÌ / ÎÍ

N^lej
Type notes here...

ÊÍ / ÎÍ

Ra\d^[¾XÊB^^ljliaf
The Random-X bootstrap proceeds as followsÏ

The regressors are treated as random
Thus, we select bootstrap samples directly from the observations and calculate the
statistic for each bootstrap sample
also called bootstrap pairs
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Fited¾XÊB^^ljliaf
The Fixed-X Bootstrap proceeds as followsÏ

The regressors are treated as fixed - implies that the regression model fit to the data is
"correct"
The fitted values of  are then the expectation of the bootstrap
We attach a random error (usually resampled from the residuals) to each  which
produces the fixed-x bootstrap sample 
To obtain bootstrap replications of the coefficients, we regress  on the fixed model
matrix for each bootstrap sample
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WVSÊDala
secpayÏ Imagine two secretaries, of the same age, doing practically the same job. One
finds out that the other earns considerably more than she does. The better paid
secretary, however, is quicker, more efficient and more reliable at her job. In your
opinion, is it fair or not fair that one secretary is paid more than the otherÔ
gini Observed inequality captured by GINI coefficient at the country level.
democrat Coded 1 if the country maintained "partly free" or "free" rating on Freedom
House's Freedom in the World meausre continuously from 1ÎÍ0 to 1ÎÎÊ.
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M^delj
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B^^ljliaffi\gÊRegiejji^\¦ÊEta[fleÊº}»
We fit a linear model of secpay on the interaction of gini and democracy.

lib-a-4(car£
dat î- read.csv("http:¨¨quantoid.net¨files¨reg3¨weakliem.txt", headeríT£
dat î- dat¤-c(25,49£, ¥
dat î- dat¤complete.cases(
  dat¤,c("secpay", "gini", "democrat"£¥£, ¥
mod î- lm(secpay ò gini¬democrat,dataídat£
S(mod, briefíTRUE£

³³ Coefficients:
³³                Estimate Std. Error t value Pr(ï©t©£    
³³ (Intercept£    1.059234   0.059679  17.749  î 2e-16 ¬¬¬
³³ gini          -0.004995   0.001516  -3.294  0.00198 ¬¬ 
³³ democrat      -0.486071   0.088182  -5.512 1.86e-06 ¬¬¬
³³ gini:democrat  0.010840   0.002476   4.378 7.53e-05 ¬¬¬
³³ ---
³³ Signif. codes:  0 '¬¬¬' 0.001 '¬¬' 0.01 '¬' 0.05 '.' 0.1 ' ' 1
³³ 
³³ Residual standard deviation: 0.07118 on 43 degrees of freedom
³³ Multiple R-squared: 0.5176
³³ F-statistic: 15.38 on 3 and 43 DF,  p-value: 6.087e-07 
³³     AIC     BIC 
³³ -109.20  -99.95
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If we are relatively certain that the
model is the "right" model (i.e., it is
properly specified), then this makes
sense.
The Boot function in the car package
will bootstrap regression models
directly. - The code for today also
shows the way to do this with the boot
function from the boot package - a
more flexible, but also more
complicated method.

Fited¾XÊB^^ljliaffi\g

lib-a-4(car£
boot.reg1 î- Boot(mod, Rí500, methodí"residual"£

est1 î- tidy_boot_ci(boot.reg1, typeí"perc", 
             term_names í names(coef(mod£££
est2 î- tidy_boot_ci(boot.reg1, typeí"bca", 
             term_names í names(coef(mod£££
est1

³³ ³ A tibble: 4 x 4
³³   term          estimate conf.low conf.high
³³   îchrï            îdblï    îdblï     îdblï
³³ 1 (Intercept£    1.06     0.944     1.18   
³³ 2 gini          -0.00500 -0.00808  -0.00193
³³ 3 democrat      -0.486   -0.665    -0.321  
³³ 4 gini:democrat  0.0108   0.00620   0.0155

est2

³³ ³ A tibble: 4 x 4
³³   term          estimate conf.low conf.high
³³   îchrï            îdblï    îdblï     îdblï
³³ 1 (Intercept£    1.06     0.937     1.17   
³³ 2 gini          -0.00500 -0.00802  -0.00177
³³ 3 democrat      -0.486   -0.654    -0.291  
³³ 4 gini:democrat  0.0108   0.00572   0.0154
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Random-X resampling is also referred
to as observation resampling
It selects  bootstrap samples (i.e.,
resamples) of the observations, fits the
regression for each one, and
determines the standard errors from
the bootstrap distribution

Ra\d^[¾XÊieja[fli\gÊº}»

boot.reg2 î- Boot(mod, Rí500, methodí"case"£

est1a î- tidy_boot_ci(boot.reg2, typeí"perc", 
             term_names í names(coef(mod£££
est2a î- tidy_boot_ci(boot.reg2, typeí"bca", 
             term_names í names(coef(mod£££
est1a

³³ ³ A tibble: 4 x 4
³³   term          estimate conf.low conf.high
³³   îchrï            îdblï    îdblï     îdblï
³³ 1 (Intercept£    1.06     0.948     1.17   
³³ 2 gini          -0.00500 -0.00817  -0.00164
³³ 3 democrat      -0.486   -0.665    -0.296  
³³ 4 gini:democrat  0.0108   0.00558   0.0158

est2a

³³ ³ A tibble: 4 x 4
³³   term          estimate conf.low conf.high
³³   îchrï            îdblï    îdblï     îdblï
³³ 1 (Intercept£    1.06     0.967     1.20   
³³ 2 gini          -0.00500 -0.00945  -0.00228
³³ 3 democrat      -0.486   -0.664    -0.296  
³³ 4 gini:democrat  0.0108   0.00557   0.0157
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WhalÊifÊseÊRelai\edÊlheÊOmllieij­

Ì3 / ÎÍ

N^lej
Type notes here...

Ì4 / ÎÍ

B^^ljliafÊDijilibmli^\
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Jackk\ife¾aflei¾B^^ljliaf
The jackknife-after-bootstrap provides a diagnostic of the bootstrap by allowing us to
examine what would happen to the density if particular cases were deleted

Given that we know that there are outliers, this diagnostic is important
The jackknife-after-bootstrap plot is produced using the jack.after.boot function in
the boot package. Once again, the indexí2 argument asks for the results for the slope
coefficient in the model

jack.after.boot(boot.reg1, indexí2£
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Jackk\ife¾aflei¾B^^ljliafÊº~»
The jack.after.boot plot is constructed as followsÏ

the horizontal axis represents the standardized jackknife value (the standardized value
of the difference with that observation taken out)
The vertical axis represents various quantiles of the bootstrap statistic
Horizontal lines in the graph represent the bootstrap distribution at the various
quantiles
Case numbers are labeled at the bottom of the graph so that each observation can be
identified
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Figmie
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FitedÊreijmjÊia\d^[
Why do the samples differÔ

Fixed-X resampling enforces the assumption that errors are randomly distributed by
resampling the residuals from a common distribution

As a result, if the model is not specified correctly (i.e., there is un-modeled
nonlinearity, heteroskedasticity or outliers) these attributes do noW carry over to the
bootstrap samples

the effects of outliers was clear in the random-X case, but not with the fixed-X bootstrap
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Whe\ÊMighlÊN^\faia[eliicÊB^^ljliaffi\g
Fail­

Incomplete DataÏ since we are trying to estimate a population distribution from the
sample data, we must assume that the missing data are not problematic. It is
acceptable, however, to use bootstrapping if multiple imputation is used beforehand

Dependent dataÏ bootstrapping assumes independence when sampling with
replacement. It should not be used if the data are dependent

Outliers and influential casesÏ if obvious outliers are found, they should be removed or
corrected before performing the bootstrap (especially for random-X). We do not want
the simulations to depend crucially on particular observations
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Eta[fleÊfi^[ÊClajj
We could bootstrap the ALSOS algorithm to get a sense of how variable the optimally scaled
values are.

Let's work through building the function together.

lib-a-4(DAMisc£
lib-a-4(progress£
load(file("https:¨¨quantoid.net¨files¨reg3¨wvs.rda"££
wvsÝclass_num î- as.numeric(wvsÝclass£
wvs î- wvs åïå 
  select(age, class_num, educ, income, sex, happy£ åïå 
  na.omit(£
nreps î- 500
form î- as.formula(class_num ò age é I(ageñ2£ é educ é income é sex é happy£

ÍÌ / ÎÍ

N^lej
Type notes here...

ÍÍ / ÎÍ



Paia[eliicÊB^^ljliaf
A parametric bootstrap re-samples from a known distribution to characterize uncertainty.

This feels a lot like being Bayesian
In fact, in some cases you can even treat parametric bootstrapped values as draws
from a posterior distribution.

The way I almost always use this is to sample from the distribution of regression model
coefficients.

You can then use draws of  to make calculations.
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Eta[fle
Going back to the lecture on polynomial regression, what if we wanted to get a ÎÊ%
confidence interval for the point at which the predicted prestige for women reached its
lowest pointÔ

data(Prestige, packageí"carData"£
mod î- lm(prestige ò log(income£ é poly(women, 2, rawíTRUE£ é 
            poly(education, 3£, dataíPrestige£
b1 î- unname(coef(mod£¤3¥£
b2 î- unname(coef(mod£¤4¥£
minprest î- -b1¨(2¬b2£
minprest

³³ ¤1¥ 35.86337
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NonÂ4a6ame86ic Pa6ame86ic

B^lhÊTufejÊ^fÊB^^ljliaf

boot.min î- f0nc/ion(data, inds£¦
  m î- update(mod, dataídata¤inds, ¥£
  b1 î- unname(coef(m£¤3¥£
  b2 î- unname(coef(m£¤4¥£
  -b1¨(2¬b2£
§
out1 î- boot(Prestige, boot.min, Rí5000£
boot.ci(out1, typeí"perc"£

³³ BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
³³ Based on 5000 bootstrap replicates
³³ 
³³ CALL : 
³³ boot.ci(boot.out í out1, type í "perc"£
³³ 
³³ Intervals : 
³³ Level     Percentile     
³³ 95å   (-1.74, 48.82 £  
³³ Calculations and Intervals on Original Scale

B î- MASS::mvrnorm(5000, coef(mod£, vcov(mod££
out2 î- -B¤,3¥¨(2¬B¤,4¥£
quantile(out2, c(.025, .975££

³³      2.5å     97.5å 
³³  7.114885 47.818339
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Type notes here...
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UjejÊ^fÊlheÊPaia[eliicÊB^^ljliaf
I use the parametric bootstrap in the following settings.

1. Predicted response values from non-linear GLMs - both average case and average effect
approaches.

Differences in predictions as well.
2. Importance or Relative Importance measures.
3. Simulations to understand the properties of some quantity.
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Ajjm[fli^\jÊRedmt
RandomÂX

Sample is representative of the population.
Systematic component of the model is properly specified.

Fi<edÂX

Random-X assumptions 
Errors are iid.

Pa6ame86ic

Fixed-X assumptions 
Random component of the model is properly specified (i.e., assumed error distribution is
correct).
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