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Goals for Today
1. Discuss Information Theory as it relates to model selection and discrimination.

Identify the difference between AIC and BIC.
2. Describe Clarke's distribution free test for non-nested models.
3. Consider model selection uncertainty and methods for controlling it - Model averaging.
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What do we Mean by 'Model Selection'
Testing competing models against each other (i.e., relative fit).

Nested model tests
Non-nested model tests

Multi-model inference
How to deal with model selection uncertainty in a principled way.
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Options for Comparative Model Fit
Direct tests of nested models - F (ANOVA),  (Analysis of Deviance, LR-Test)
Information Criteria measures (e.g., AIC and BIC)
Tests for Non-nested Models (e.g., Clarke and Vuong)

χ2

5 / 58



Notes
Type notes here...

6 / 58



Nested Model Tests
Tests like the LR test and F-test require nested models because,

They are considering the different between two statistics (RSS or LR)
This difference follows an  or  distribution under the null (neither distribution
permits negative values).
So, the model with more parameters must provide a fit not worse than the model with
fewer parameters.
The only way to ensure this is the case is to ensure that the models are nested

F χ2
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Likelihood Ratio Test
The LR Test uses the statistic defined by the difference in the log-likelihoods of the models.

where there are  parameters in the unrestricted model and  parameters in the restricted
model.

The distribution is asymptotically right, but will not be exactly  in finite samples.
Deviance is often taken as , though this is not always the case (take, for
example, the linear model case).

LR = −2 (llrestricted − llunrestricted) ∼ χ2
p−q

p q

χ2

−2llmodel
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Information Theory
Information theorists believe in reality, but not in the notion of "true" models.

Models are necessarily simplified constructions that try to approximate reality.

There is more information in large datasets than small.

Information amounts to the ability to identify interesting, though substantively small
effects
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Principles for Model-based Inference
Parsimony

Encapsulates the bias-variance tradeoff.

Multiple Working Hypotheses

There is no single null hypothesis against which an alternative is to be tested.
rather, there is a (small-ish) set, well-specified and theoretically derived working
hypotheses.

Strength of Evidence

We must be able to quantify the "strength of evidence" supporting various working
hypotheses if science is to progress in the usual way.
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K-L Information
Kullback and Leibler (1951) quantified the meaning of "information".

where:

 denotes a fixed (i.e., constant) reality (reality is non-parametric [i.e., it has no
parameters])

 is a model approximating  with parameters .
 is the information lost when using  to approximate .

I(f, g) = ∫ f(x)log( ) dx
f(x)

g(x|θ)

f

g f θ

I(f, g) g f
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Expected Information
We cannot use  in model selection because it requires knowledge of  and  (the
parameters in .) Instead, consider the Expected Infromation

If we wanted to compare model  with model , we could calculate:

I(f, g) f θ

g

Ef [I(f, g)] = Ef [log(f(x))] − Ef [log(g(x|θ))]

= C − Ef [log(g(x|θ))]

g(x|θ) m(x|γ)

Ef [I(f, g)] − Ef [I(f,m)] = (Ef [log(f(x))] − Ef [log(g(x|θ))])

− (Ef [log(f(x))] − Ef [log(m(x|γ))])

= Ef [log(g(x|θ))] − Ef [log(m(x|γ))]

≈ Ef [log(g(x|θ̂))] − Ef [log(m(x|γ̂))]
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Expected Information in Model Comparisons
As described above, we could use expected information to compare models. Some things to
note:

1. We usually describe a "candidate set" of models - the set of models over which the
comparison is to be made.

2. There is no assumption that the "true" model is in the candidate set of models.
3. In fact, there is no assumption that a true model exists at all.

The guiding principle that reality is complex and nonparametric eschews the idea of
a "true" model - all models are simplifications, abstractions and approximations and
those none is in any sense "true".
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Akaike's Information Criterion (AIC)
The goal was to estimate: , essentially the relative information with 

 replaced with the MLE estimates .

Akaike found that  was a biased estimator of ,

but that asymptotically the bias is approximately equal to , the number of parameters
in . Thus,

 is not arbitrary, but chosen to minimize bias in the estimated expected information.

EyEx [log(g(x|θ̂(y)))]

θ θ̂

log(L(θ̂ |data)) EyEx [log(g(x|θ̂(y)))]

K

θ̂

log(L(θ̂ |data)) − K ≈ C − Êĝ [I(f, ĝ)]

K

AIC = −2(log(L(θ̂ |data)) − K)

= −2log(L(θ̂ |data)) + 2K
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Small-sample Correction
When  is large relative to  or for any value of  for small , there is a correction to .

This should be used probably always, but especially if  for the largest  in the
model set.

 converges to  as .

K n K n AIC

AICc = −2log(L(θ̂ |data)) + 2K +
2K(K + 1)

n − K − 1

n/K ≤ 40 K

AICc AIC n → ∞
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Delta values
Often, for  or  to be interpretable,  should be calculated such that for each
model  in the model set,

This gives the "best" model 

This captures the information loss due to using model  rather than the best model, 
.

The large , the less likely model  is the best approximation of reality .

Conventional cut-off values for  are:

 indicates substantial support,
 indicates less support,

 indicates essentially no support.

AICc AIC Δi

i

Δi = AICi − AICmin

Δi = 0

gi
gmin

Δi i f

Δi

Δi ≤ 2
4 ≤ Δi ≤ 7
Δi ≥ 10 25 / 58
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BIC
The BIC is defined as:

BIC is not technically based in "information theory" and as such is not an information
criterion measure.
The BIC is meant to approximate the Bayes Factor (or rather its log):

Models need not be nested and we need not appeal to the idea that there exists a "true"
model, much less that the true model is in our set of candidate models.

BIC = −2 log(L) + K log(n)

=
Pr(D|M1)

Pr(D|M2)

∫ Pr(θ1|M1) Pr(D|θ1,M1)dθ1

∫ Pr(θ2|M2) Pr(D|θ2,M2)dθ2
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AIC or BIC
The question of whether to use AIC or BIC is often left to how much you want to penalize
additional model parameters. In actuality, the question is one of performance in picking the
K-L best model.

When there are "tapering effects", AIC is better

When reality is simple with a few big effects captured by the highest posterior
probability models, then BIC is often better.
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Non-nested Model Tests
Both AIC and BIC work for non-nested models, but neither is a test per se (i.e., they don't
have sampling distributions which can be evaluated to produce -values). There are a set of
tests for non-nested models that do have known sampling distributions. Consider the
following set of models:

where  and  are vectors of length  and , respectively.

Models are nested if there exists a vector of values  such that  or 
depending on which model is bigger. Otherwise, the models are non-nested.

Usually we talk about models being nested when one contains a subset of variables in
the other, but that is not the only way to define nesting.

p

H1 : y = Xβ + u1, E(u′
1u1) = σ2

1I

H2 : y = Zγ + u2, E(u′
2u2) = σ2

2I

β γ k1 k2

a aβ = γ aγ = β
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Distribution Free Test
Clarke (2003) puts forth a distribution-free test that is really a "paired sign test". The
statistic is calculated as:

The  are the difference in individual log-likelihoods for the two models
The second equation above counts up the number of positive  values.
We are testing to see whether  is significantly bigger than a random binomial variable
that has a  and  the same as the number of rows in  and .

di = log(Lβ,xi) − log(Lγ,zi) + (p − q)( )

B =
n

∑
i=1

I0,+∞(di)

log(n)

2n

di
di

B
p = .5 n X Z

33 / 58



Notes
Type notes here...

34 / 58



Examples in R
You can produce AIC, AICc and BIC in the following ways:

library(car)
library(AICcmodavg)
data(Prestige)
mod1 <- lm(prestige ~ income + women,
  data=na.omit(Prestige), y=T)
mod2 <- lm(prestige ~ education + type + women,
  data=na.omit(Prestige), y=T)
AIC(mod1)

## [1] 763.8879

c(AICc(mod1), AICc(mod2))

## [1] 764.3180 685.4286

c(AIC(mod1), AIC(mod2))

## [1] 763.8879 684.5055

c(BIC(mod1), BIC(mod2)) 35 / 58
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Clarke Tests in R
library(clarkeTest)
clarke_test(mod1, mod2)

## 
## Clarke test for non-nested models
## 
## Model 1 log-likelihood: -378
## Model 2 log-likelihood: -336
## Observations: 98
## Test statistic: 24 (24%)
## 
## Model 2 is preferred (p = 4.2e-07)
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Model Selection Uncertainty
Generally we present what we think to be the single best model after a more or less
extensive model search.

Our estimates of sampling variability of parameters is often too small because we
"forget" to include model selection uncertainty (the fact that we didn't know initially
exactly the right model).

This uncertainty captures the extent to which we are unsure about this model and have
considered other alternatives.

Others have proposed solutions to the problem (e.g., Leamer, with the idea of "Leamer
Bound"), but we will consider an alternative - AIC/BIC weights and Model Averaging.
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Akaike Weights
We can construct Akaike weights in the following way:

 is the likelihood of the model given the data.

 gives (essentially) the probability that model  is the K-L best model approximation of 
.

wi =
exp( )−Δi

2

∑i exp( )−Δi

2

exp( )−Δi

2

wi i
f
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AIC Weights (2)
These estimates can be used to give us measures of effects and sampling variance that are
unconditional on the model selected.

Average Effect

Sampling Variability

^̄θ = ∑
i

wiθ̂ i

v̂ar(^̄θ) = [∑
i

wi[v̂ar(θ̂ i|gi) + (θ̂ i − ^̄θ)
2

] ]

21
2
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Example
Let's think about the Ericksen Dataset and estimating different models. One method would
be to specify the models we wanted directly.

library(MuMIn)
mods <- list()
mods[[1]] <- lm(undercount ~ crime + highschool, data=Ericksen)
mods[[2]] <- lm(undercount ~ poverty + language, data=Ericksen)
mods[[3]] <- lm(undercount ~ housing + crime, data=Ericksen)
modavg <- model.avg(mods)
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The coefmat.full element averages over
all models including zeros for the
coefficient when the variable was
excluded.

The coefmat.subset element averages
across only those models that included the
variable of interest, disregarding those
where the variable was not included.

Multi-model Sampling Variance in R
sma <- summary(modavg)
printCoefmat(sma$coefmat.full, digits=3)

##             Estimate Std. Error Adjusted SE z value Pr(>|z|)    
## (Intercept) -2.78927    1.05254     1.06876    2.61   0.0091 ** 
## crime        0.06561    0.01264     0.01279    5.13    3e-07 ***
## highschool   0.01767    0.02551     0.02585    0.68   0.4942    
## housing     -0.00434    0.01795     0.01827    0.24   0.8124    
## poverty      0.00247    0.02195     0.02199    0.11   0.9106    
## language     0.00658    0.05719     0.05724    0.11   0.9084    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

printCoefmat(sma$coefmat.subset, digits=3)

##             Estimate Std. Error Adjusted SE z value Pr(>|z|)    
## (Intercept)  -2.7893     1.0525      1.0688    2.61   0.0091 ** 
## crime         0.0665     0.0101      0.0103    6.47  < 2e-16 ***
## highschool    0.0289     0.0272      0.0277    1.04   0.2981    
## housing      -0.0116     0.0279      0.0284    0.41   0.6834    
## poverty       0.1809     0.0551      0.0562    3.22   0.0013 ** 
## language      0.4825     0.1006      0.1026    4.70  2.6e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 47 / 58
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Option 2
Another option would be to let the function sort out which variables ought to be in there:

The dredge() function estimates all  models and ma() averages over them based on
their AIC weights.

library(leaps)
library(MuMIn)
E <- na.omit(Ericksen)
fm1 <- lm(undercount ~ ., data=E,
    na.action="na.fail")
out <- dredge(fm1)
ma <- model.avg(out)

2k
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Model Selection Summary
sma <- summary(ma, subset=delta < 4)

printCoefmat(sma$coefmat.full, digits=3)

##              Estimate Std. Error Adjusted SE z value Pr(>|z|)    
## (Intercept)  -0.30929    1.78497     1.80078    0.17  0.86363    
## conventional  0.02940    0.00904     0.00919    3.20  0.00138 ** 
## crime         0.02111    0.01527     0.01541    1.37  0.17081    
## language      0.16050    0.11549     0.11662    1.38  0.16876    
## minority      0.09130    0.02470     0.02503    3.65  0.00026 ***
## poverty      -0.08804    0.08853     0.08930    0.99  0.32422    
## citystate    -0.52924    0.78402     0.79087    0.67  0.50337    
## highschool    0.00461    0.03027     0.03059    0.15  0.88034    
## housing      -0.00621    0.01696     0.01717    0.36  0.71747    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

printCoefmat(sma$coefmat.subset, digits=3)

##              Estimate Std. Error Adjusted SE z value Pr(>|z|)    
## (Intercept)  -0.30929    1.78497     1.80078    0.17  0.86363    
## conventional  0.02965    0.00867     0.00883    3.36  0.00078 ***
## crime         0.02662    0.01214     0.01236    2.15  0.03123 *  
## language      0.20199    0.09168     0.09347    2.16  0.03069 *  
## minority      0.09139    0.02454     0.02487    3.68  0.00024 ***
## poverty      -0.13473    0.07552     0.07691    1.75  0.07980 .  
## citystate    -1.13177    0.79535     0.80971    1.40  0.16219    
## highschool    0.01537    0.05377     0.05439    0.28  0.77748    
## housing      -0.02045    0.02561     0.02606    0.78  0.43260    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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More Multi-model Inference
We could also think about two other uses of Akaike weights:

We could actually use  as our point estimate that will be less biased due to model
selection.
Summing  across all of the models including variable  can give a sense of how
"important" variables are.

^̄θ

wi j
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Important Variables in R
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Multi-model Averaging Cautions
Difficult if candidate models have different functional forms for the same variable (e.g.,
additive in one model and conditional in another.)

Only really takes care of the model if all of the models you ever want to estimate are in
the candidate set.

Won't probably do what you want if you've got different ways to operationalize a single
concept.

57 / 58



Notes
Type notes here...

58 / 58


