
Regression III
Feature Selection and Regularization

Dave Armstrong

Goals for Today
1. Discuss feature selection and its relationship with more conventional model testing and

discrimination.
2. Develop all subsets regressions and consider a comparison of models.
3. Describe cross-validation and its utility for helping choose tuning parameters.
4. Discuss regularization and regularized regression models - Ridge regression, the LASSO,

Elastic Net and Adaptive LASSO.
Consider how these models adjudicate collinearity problems.

5. Consider the problem of post-selection inference.

2 / 114

Feature Selection
Sometimes, we may not want have a couple of different models; instead, we have a bunch
of variables and we want to find out which ones are "important".

Important, in this case, means predictive power - ability to capture variation or
discriminate among values in the dependent variable.
Feature selection automate the process of choosing features based on what "works" in
the data.

Some questions you might have:

Q: Isn't this atheoretical? A: Yes
Q: Isn't this data mining? A: Yes
Q: Isn't this kind of analysis disingenuous? A: It depends.

3 / 114

Notes
Type notes here...

4 / 114

Feature Selection: Manually
How many of you have written a paper where you had a theory, that theory produced a
single model specification, the operationalization of the concepts in measures was utterly
uncontroversial and the empirical model was so thoroughly beyond reproach and obviously
useful that no diagnostics were needed?

We generally use ad hoc methods of feature selection.

These are only slightly less problematic - more on volume than principle.

If we're going to use the data to select features, why not go all the way?

5 / 114

Notes
Type notes here...

6 / 114

Subset Methods
The goal of subset methods is to examine which subsets give the best fit to the data for a
given number of predictors
Even when the number of variables is large, it is feasible to examine all subsets

If there are potential predictors, then there are possible models
Subset techniques have the advantage over stepwise regression of revealing alternative
nearly equivalent models and thus avoid the appearance of a uniquely "correct" result
Several measures can be used to determine the best model subset

AIC
BIC
Mallow's -statistic

p 2p

R2

Cp

7 / 114

Notes
Type notes here...

8 / 114

Mallow's Cp Statistic
Mallow's -statistic is defined as:

 is for the full model containing explanatory variables; RSS is from the
subset model with explanatory variables

 is the incremental -test for the hypothesis that the regressors omitted from the
subset have slope 0. If the hypothesis is true, , and thus

 increases with the residual sum of squares.
A good model, then, has as close to as possible
A plot of against allows us to choose the model

Cp

Cp = + 2p − n

= (K + 1 − p)(Fp − 1) + p

∑E2
i

S2
E

S2
E

k (∑E2
i
)

p

Fp F

E(Fp) ≃ 1 Cp ≃ p

Cp

Cp p

Cp p

9 / 114

Notes
Type notes here...

10 / 114

Comparison

11 / 114

Notes
Type notes here...

12 / 114

Model Selection Example: Ericksen Data (1)
library(leaps)
library(car)
Ericksen <- DAMisc::scaleDataFrame(Ericksen)
X <- model.matrix(undercount ~ .,
 data=Ericksen)[,-1]
y <- model.response(model.frame(undercount
 ~ ., data=Ericksen))
rmods <- regsubsets(x=X, y=y, method="exhaustive",
 all.best=TRUE, nbest=10)

13 / 114

Notes
Type notes here...

14 / 114

Model Selection Example: Ericksen Data (3)
Subset selection is implement in R using two packages: leaps and car

Using the regsubsets function, you specify the full model and how many subsets you
want

The subsets function in car graphs the models with the subset size on the horizontal
axis and the statistic used for fit on the vertical axis

The subsets function allows you to specify the following statistics: Mallows cp,

rsq, adjusted adjrs2, RSS rss or BIC bic

You can also specify the number of predictors you want in the model (below specifies 3
to 5 predictors)

Cp R2

R2

15 / 114

Notes
Type notes here...

16 / 114

Subsets plot for the Ericksen Data
library(car)
subsets(rmods, statistic="cp", legend=F)

17 / 114

Notes
Type notes here...

18 / 114

Subsets plot for the Ericksen Data (2)
library(car)
subsets(rmods, statistic="cp", legend=F)

19 / 114

Notes
Type notes here...

20 / 114

Subsets plot zoomed in

21 / 114

Notes
Type notes here...

22 / 114

We could also consider the models that
have the smallest .

Cp − K

Cp − K

s <- summary(rmods)
K <- rowSums(s$which)
abbrevs <- c("m", "cr", "p", "l", "hg", "hs", "ct", "cn")
mod <- apply(s$which[,-1], 1, function(i)
 paste(abbrevs[which(i)], collapse="-"))
dat <- tibble(
 K=K,
 Cp = s$cp,
 adjr2 = s$adjr2,
 mod = mod,
 diff = Cp-K)
sub <- dat %>%
 filter(K < 9) %>%
 slice_min(diff, n=10)

A tibble: 10 x 5
K Cp adjr2 mod diff
<dbl> <dbl> <dbl> <chr> <dbl>
1 8 8.87 0.662 m-cr-p-l-hs-ct-cn 0.874
2 7 7.98 0.661 m-cr-p-l-ct-cn 0.983
3 8 9.01 0.661 m-cr-p-l-hg-ct-cn 1.01
4 7 8.21 0.660 m-cr-p-l-hg-cn 1.21
5 8 9.27 0.659 m-cr-p-l-hg-hs-cn 1.27
6 6 7.32 0.659 m-cr-p-l-cn 1.32
7 7 8.96 0.656 m-cr-p-l-hs-cn 1.96
8 7 9.41 0.653 m-cr-l-hs-ct-cn 2.41
9 6 8.83 0.651 m-p-l-ct-cn 2.83
10 8 11.4 0.647 m-cr-l-hg-hs-ct-cn 3.41

23 / 114

Notes
Type notes here...

24 / 114

Overfit Much?
How do we know we're not overfitting our data?

Sometimes it's obvious - it's hard to argue that you're overfitting when your is 0.03.
Generally, we don't know.

Cross-validation is a way of trying to protect us against overfitting the model.

R2

25 / 114

Notes
Type notes here...

26 / 114

Cross-Validation (1)
If no two observations have the same , a -variable model fit to observations will fit
the data precisely

Of course, this will lead to biased estimators that are likely to give quite different
predictions on another dataset (generated with the same DGP)
Model validation allows us to assess whether the model is likely to predict accurately on
future observations or observations not used to develop this model

External validation involves retesting the model on new data collected at a different
point in time or from a different population
Internal validation (or cross-validation) involves fitting and evaluating the model
carefully using only one sample

Y p p + 1

27 / 114

Notes
Type notes here...

28 / 114

Cross-Validation (2)
Cross-validation is similar to bootstrapping in that it resamples from the original data

The basic form involves randomly dividing the sample into two subsets:
The first subset of the data (screening sample) is used to select or estimate a
statistical model
The second subset is then used to test the findings

Can be helpful in avoiding capitalizing on chance and over-fitting the data - i.e., findings
from the first subset may not always be confirmed by the second subsets
Cross-validation is often extended to use several subsets (either a preset number chosen
by the researcher or leave-one-out cross-validation)

29 / 114

Notes
Type notes here...

30 / 114

Cross-Validation (3)
The data are split into subsets (usually)
Each of the subsets are left out in turn, with the regression run on the remaining data
Prediction error is then calculated as the sum of the squared errors:

We choose the model with the smallest average "error"

We could also look to the model with the largest average

k 3 ≤ k ≤ 10

RSS = ∑(Yi − Ŷ i)
2

MSE =
∑(Yi − Ŷ i)

2

n

R2

31 / 114

Notes
Type notes here...

32 / 114

Cross-Validation (4)
How many observations should I leave out from each fit?

There is no rule on how many cases to leave out, but Efron (1983) suggests that grouped
cross-validation (with approximately of the data left out each time) is better than
leave-one-out cross-validation

Number of repetitions

Harrell (2001:93) suggests that one may need to leave of the sample out 200 times to
get accurate estimates

Cross-validation does not validate the complete sample

External validation, on the other hand, validates the model on a new sample
Of course, limitations in resources usually prohibits external validation in a single study

10%

1
10

33 / 114

Notes
Type notes here...

34 / 114

The delta_1 term is the average raw
cross-validation error. The delta_2 term
corrects for using -fold rather than leave-
one-out CV.

Cross-Validation in R
library(boot)
dat <- read.csv("http://www.quantoid.net/files/reg3/weakliem.txt"
 header=T)
dat <- dat[-c(25,49),]
mod1 <- glm(secpay ~ poly(gini, 3)*democrat, data=dat)
mod2 <- glm(secpay ~ gini*democrat, data=dat)

deltas <- NULL
for(i in 1:25){
deltas <- rbind(deltas, c(
 cv.glm(dat, mod1, K=5)$delta,
 cv.glm(dat, mod2, K=5)$delta)
)}
out <- matrix(colMeans(deltas), ncol=2)
rownames(out) <- c("delta_1", "delta_2")
colnames(out) <- c("Model 1", "Model 2")

Model 1 Model 2
delta_1 0.0212 0.0058
delta_2 0.0180 0.0057

k

35 / 114

Notes
Type notes here...

36 / 114

Tidy CV

cv_fun <- function(split, ...){
 u1 <- update(mod1, data=analysis(split))
 u2 <- update(mod2, data=analysis(split))
 e1_sq <- (assessment(split)$secpay -
 predict(u1, newdata=assessment(split)))^2
 e2_sq <- (assessment(split)$secpay -
 predict(u2, newdata=assessment(split)))^2
 tibble(
 err = c(sum(e1_sq), sum(e2_sq)),
 n = c(length(e1_sq), length(e2_sq)),
 model = factor(c("poly_int", "linear_int")))
}
library(purrr)
library(rsample)
v <- vfold_cv(dat, v=5, repeats=250) %>%
 mutate(err = map(splits, cv_fun))

v %>% unnest(err) %>%
 group_by(id, model) %>%
 summarise(mse = sum(err)/sum(n)) %>%
 pivot_wider(names_from="model", values_from = "mse") %>%
 mutate(diff = poly_int - linear_int) %>%
 ungroup %>%
 summarise(across(c(linear_int, poly_int), mean),
 "p(MSE_M1 > MSE_M2)" = mean(diff > 0))

A tibble: 1 x 3
linear_int poly_int `p(MSE_M1 > MSE_M2)`
<dbl> <dbl> <dbl>
1 0.00578 0.0103 1

37 / 114

Notes
Type notes here...

38 / 114

Cross-validating Span in Loess
We could use cross-validation to tell us something about the span in our Loess model.

First, split the sample into groups (usually 10).
For each of the groups, estimate the model on the other 9 and get predictions
for the omitted groups observations. Do this for each of the 10 subsets in turn.
Calculate the CV error:
Potentially, do this lots of times and average across the CV error.

K
k = 10

∑(yi − ŷ i)
21

n

set.seed(1)
n <- 400
x <- 0:(n-1)/(n-1)
f <- 0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10
y <- f + rnorm(n, 0, sd = 2)
tmp <- data.frame(y=y, x=x)
lo.mod <- loess(y ~ x, data=tmp, span=.75)

39 / 114

Notes
Type notes here...

40 / 114

Minimizing CV Criterion Directly

There is also a canned function in fANCOVA that optimizes the span via AICc or GCV.

library(DAMisc)
cvlo <- DAMisc:::cv.lo2
best.span <- optimize(cvlo, c(.05,.95), form=y ~ x, data=tmp,
 numiter=5, K=10)
best.span

$minimum
[1] 0.2611968

$objective
[1] 3.914841

library(fANCOVA)
best.span2 <- loess.as(tmpx, tmpy, criterion="aicc")
best.span2$pars$span

[1] 0.2136455

best.span3 <- loess.as(tmpx, tmpy, criterion="gcv")
best.span3$pars$span

[1] 0.1483344 41 / 114

Notes
Type notes here...

42 / 114

The Curve

43 / 114

Notes
Type notes here...

44 / 114

Manually Cross-Validating in the Y-J
Transform
Sometimes, optimizing the cross-validation criterion fails.

Randomness in the CV procedure can produce a function that has several local minima.
You could force the same random split at every evaluation by hand-coding the CV, but
this might not be the best idea.
If optimization of the CV criterion fails, you could always do it manually.

λ

45 / 114

Notes
Type notes here...

46 / 114

Example
cvoptim_yj <- function(pars, form, data, trans.vars, K=5, numiter=10){
 require(boot)
 require(VGAM)
 form <- as.character(form)
 for(i in 1:length(trans.vars)){
 form <- gsub(trans.vars[i], paste("yeo.johnson(", trans.vars[i],
 ",", pars[i], ")", sep=""), form)
 }
 form <- as.formula(paste0(form[2], form[1], form[3]))
 m <- glm(as.formula(form), data, family=gaussian)
 d <- lapply(1:numiter, function(x)cv.glm(data, m, K=K))
 mean(sapply(d, function(x)x$delta[1]))
}

lams <- seq(0,2, by=.1)
s <- sapply(lams, function(x)cvoptim_yj(x, form=prestige ~ income + education + women,
 data=Prestige, trans.vars="income", K=3))
ggplot() +
 geom_line(mapping=aes(y=s, x=lams)) +
 theme_bw() +
 mytheme() +
 labs(x="Lambda", y="CV Error")

47 / 114

Notes
Type notes here...

48 / 114

Figure

49 / 114

Notes
Type notes here...

50 / 114

Shrinkage Estimators
Shrinkage estimators can reduce sampling variability and sometimes improve model fit
(particularly in the presence of collinearity).

Shrinkage estimators impose constraints on the fitted model (particularly on the size of
the coefficients).
The result of these constraints is to shrink the estimates toward zero.
Ridge Regression and the LASSO are the two most prominent shrinkage estimators.

NB: these are biased estimators, so they might be good for stabilizing predictions, but they
won't be particularly good for more conventional theory testing.

51 / 114

Notes
Type notes here...

52 / 114

Ridge Regression
Ridge Regression minimizes the following function:

 is a tuning parameter that governs the relative of RSS and the penalty on fitting the
regression surface.
As , the estimates get increasingly close to the OLS estimates.
As , the estimates get increasingly close to zero.

The choice of is important and is often done with cross-validation.

N

∑
i=1

(yi − β0 +
p

∑
j=1

βjxij)

2

+ λ

p

∑
j=1

β2
j

λ

λ → 0
λ → ∞

λ

53 / 114

Notes
Type notes here...

54 / 114

CV MSE
library(glmnet)
library(ggplot2)
library(rio)
library(tidyr)
banks99 <- import(
 "http://quantoid.net/files/reg3/banks99.dta")
banks99s <- scaleDataFrame(banks99[,-c(1,2,4)])
X <- scale(model.matrix(gdppc_mp ~. , data=banks99s))[,-1]
y <- model.response(model.frame(gdppc_mp ~. , data=banks99s))

library(glmnet)
loglam <- seq(6.8, -5, length=100)
g1 <- glmnet(X, y, alpha=0)

rcv <- cv.glmnet(X, y, alpha=0, lambda=exp(loglam))
plot(rcv)

55 / 114

Notes
Type notes here...

56 / 114

CV MSE (2)

57 / 114

Notes
Type notes here...

58 / 114

CV with Ridge Regression
r <- glmnet(X, y, alpha=0, lambda=exp(loglam))
ridge.mod <- glmnet(X,y, alpha=0, lambda=rcv$lambda.min)
mod <- lm(y ~ X)

l2o <- sqrt(sum(coef(mod)^2))
l2r <- apply(r$beta, 2, function(x)sqrt(sum(x^2)))
br <- r$beta %>% as.matrix %>% t %>% as.data.frame
br$ratio <- l2r/l2o
br <- br %>% pivot_longer(under5_mort:all_veh_pc, names_to="variable", values_to="coef")
ggplot(br, aes(x=ratio, y=coef)) +
 geom_line() +
 geom_vline(xintercept=(l2r/l2o)[87], lty=2) +
 geom_hline(yintercept=0, linetype=3) +
 facet_wrap(~variable) +
 theme_bw() +
 mytheme(panel.grid=element_blank()) +
 labs(x="Ratio of L2(ridge)/L2(OLS)", y="Coefficient")

59 / 114

Notes
Type notes here...

60 / 114

Plot

61 / 114

Notes
Type notes here...

62 / 114

Collinearity
set.seed(1234)
Sig <- diag(5)
Sig[3:5,3:5] <- .99
diag(Sig) <- 1
X <- MASS::mvrnorm(500,rep(0,5), Sig)
b <- c(1,1,1,0,0)
ystar <- X %*% b
y <- ystar + rnorm(500, 0, 2)

summary(m1 <- lm(y~ X))

Call:
lm(formula = y ~ X)

Residuals:
Min 1Q Median 3Q Max
-5.4195 -1.3696 -0.0068 1.4012 5.3665

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01686 0.08762 0.192 0.8475
X1 1.17283 0.09359 12.532 <2e-16 ***
X2 1.11657 0.09163 12.185 <2e-16 ***
X3 1.21441 0.69342 1.751 0.0805 .
X4 1.04118 0.68252 1.525 0.1278
X5 -1.09301 0.70047 -1.560 0.1193

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.953 on 494 degrees of freedom
Multiple R-squared: 0.469, Adjusted R-squared: 0.4637
F-statistic: 87.28 on 5 and 494 DF, p-value: < 2.2e-16

63 / 114

Notes
Type notes here...

64 / 114

Collinearity (2)

65 / 114

Notes
Type notes here...

66 / 114

Collinearity (3)

67 / 114

Notes
Type notes here...

68 / 114

Prediction Variances
library(boot)
df <- cbind(y, X)
boot.ridge <- function(data, inds, ...){
 tmp <- data[inds,]
 y <- tmp[,1]
 X <- tmp[,-1]
 out <- glmnet(X,y,alpha=0, lambda=.8736)
 as.vector(coef(out))
}
br <- boot(statistic=boot.ridge,
 data=df, R=100)
v <- var(br$t)
pred.vars <- diag(cbind(1, X) %*%
 v %*% t(cbind(1,X)))
lm.vars <- diag(cbind(1, X) %*%
 vcov(m1) %*% t(cbind(1,X)))

69 / 114

Notes
Type notes here...

70 / 114

Predictions
summary(pred.vars/lm.vars)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1473 0.4181 0.5551 0.5619 0.6800 1.2081

ridge.preds <- cbind(1, X) %*% coef(r2)
lm.preds <- cbind(1,X) %*% coef(m1)
cor(as.vector(lm.preds), as.vector(ridge.preds))

[1] 0.9847665

71 / 114

Notes
Type notes here...

72 / 114

LASSO (the L1 norm)
The LASSO (Least Absolute Shrinkage and Selection Operator) is another regularization
method for estimating regression.

Uses a different penalty than ridge regression:

Doesn't necessarily use all of the variables (i.e., some coefficients could be zero)

Since not all variables are used in each fit, bootstrapping is more problematic here
(though not impossible).

N

∑
i=1

(yi − β0 +
p

∑
j=1

βjxij)

2

+ λ

p

∑
j=1

|βj|

73 / 114

Notes
Type notes here...

74 / 114

The LASSO in R
banks99 <- import(
 "http://quantoid.net/files/reg3/banks99.dta")
banks99s <- scaleDataFrame(banks99[,-c(1,2,4)])
X <- scale(model.matrix(gdppc_mp ~. , data=banks99s))[,-1]
y <- model.response(model.frame(gdppc_mp ~. , data=banks99s))

loglam <- seq(6.8, -5, length=100)
cvg <- cv.glmnet(X,y, lambda=exp(loglam))
g <- glmnet(X, y, lambda=cvg$lambda.min)

round(cbind(coef(cvg), coef(mod)), 4)

21 x 2 sparse Matrix of class "dgCMatrix"
s1
(Intercept) 0.0000 0.0000
under5_mort . 0.0214
area_km2 . 0.1365
inet_hosts_pc . -0.0032
inet_users_pc 0.1022 0.1813
enprod_kgcoal_pc . 0.2801
encons_kgcoal_pc 0.0125 -0.2730
elec_prod_kwh_pc . 0.1422
cement_prod_pc . 0.0073
nseats_largest_party_leg . 0.1520
eff_leg . -0.0026
pct_seats_largest_party . 0.0250
radios_pc . 0.0140
tvs_pc . -0.0025
newspapers_pc . -0.0930
polity2 . 0.0765
parl_resp . -0.0853
popdens . 0.0607
imports_pc 0.1844 0.2825
exports_pc . 0.1673
all_veh_pc 0.4832 0.5060

75 / 114

Notes
Type notes here...

76 / 114

Regularization path
r <- glmnet(X, y, alpha=0, lambda=exp(loglam))
g <- glmnet(X, y, alpha=1, lambda=exp(loglam))
mod <- lm(y ~ X)

br1 <- r$beta %>% as.matrix %>% t %>% as.data.frame
br2 <- g$beta %>% as.matrix %>% t %>% as.data.frame
br1$lambda <- br2$lambda <- loglam
br1 <- br1 %>% pivot_longer(under5_mort:all_veh_pc, names_to="variable", values_to="coef")
br2 <- br2 %>% pivot_longer(under5_mort:all_veh_pc, names_to="variable", values_to="coef")
br1$model <- factor(1, levels=c(1,2), labels=c("Ridge", "LASSO"))
br2$model <- factor(2, levels=c(1,2), labels=c("Ridge", "LASSO"))

br <- bind_rows(br1, br2)

ggplot(br, aes(x=lambda, y=coef, colour=model)) +
 geom_line() +
 facet_wrap(~variable, scales="free_y") +
 geom_vline(xintercept=log(rcv$lambda.min), col=pal2[1], lty=3) +
 geom_vline(xintercept=log(cvg$lambda.min), col=pal2[2], lty=3) +
 geom_hline(yintercept=0, linetype=3) +
 scale_colour_manual(values=pal2) +
 theme_bw() +
 mytheme(panel.grid=element_blank()) +
 labs(x="log(Lambda)", y="Coefficient")

77 / 114

Notes
Type notes here...

78 / 114

Plot

79 / 114

Notes
Type notes here...

80 / 114

Predictions

r1 <- glmnet(X, y, alpha=0, lambda=rcv$lambda.mi
g1 <- glmnet(X, y, alpha=1, lambda=cvg$lambda.mi
yhat <- mod$fitted.values
names(yhat) <- NULL

preds <- tibble(
 ols=yhat,
 ridge = as.vector(predict(r1, newx=X)),
 lasso= as.vector(predict(g1, newx=X))
)

ggpairs(preds) + mytheme() + theme_bw()

81 / 114

Notes
Type notes here...

82 / 114

LASSO and collinearity
cvg2 <- cv.glmnet(scale(coll$X), coll$y, alpha=1
g2 <- glmnet(scale(coll$X), coll$y,
 alpha=1, lambda=cvg2$lambda.min)
r2 <- glmnet(scale(coll$X), coll$y,
 alpha=0, lambda=rcv2$lambda.1se)
coefs <- tibble(
 b = c(as.vector(m1$coef), as.vector(coef(r2)),
 as.vector(coef(g2))),
 model = factor(rep(1:3, each=length(coef(m1)))
 labels=c("LM", "Ridge", "LASSO")),
 variable = rep(names(m1$coef), 3))
p1 <- ggplot(coefs, aes(x=b, y=variable,
 colour=model, shape=model)) +
 geom_point(size=3) +
 theme_bw() +
 scale_colour_manual(values=pal5[1:3]) +
 geom_vline(xintercept=0, lty=3)+
 mytheme()

83 / 114

Notes
Type notes here...

84 / 114

Elastic Net
The Elastic Net is a compromise between Ridge and LASSO regression:

LASSO: , Ridge:

 can be chosen a priori or you can experiment with several different values.

Often setting close to, but not exactly, 1 has nice properties.

min
β0,β

N

∑
i=1

wil(yi, β0 + βT xi) + λ [(1 − α)||β||22/2 + α||β||1] ,
1

N

α = 1 α = 0

α

α

85 / 114

Notes
Type notes here...

86 / 114

Elastic Net in Action
cv.enet <- list()
s <- seq(0.01, .99, length=25)
for(i in 1:length(s)){
 cv.enet[[i]] <- cv.glmnet(X, y, alpha = s[i])
}
cv.err <- sapply(cv.enet, function(x)min(x$cvm))
s[which.min(cv.err)]

[1] 0.01

b <- sapply(cv.enet[c(1,7,25)],
 function(x)as.matrix(coef(x)))

plot.dat <- data.frame(
 b = c(b),
 group = as.factor(rep(c(.010,.255,.990),
 each = 21)),
 var = factor(rep(
 rownames(coef(cv.enet[[1]])), 3)))
library(ggplot2)
g <- ggplot(plot.dat, aes(x=b,
 y=reorder(var, b, mean))) +
 geom_point() +
 scale_colour_manual(values=pal3) +
 theme_bw() +
 facet_wrap(~group, nrow=1) +
 mytheme() +
 ylab("") 87 / 114

Notes
Type notes here...

88 / 114

Figure

89 / 114

Notes
Type notes here...

90 / 114

Elastic Net and Collinearity

91 / 114

Notes
Type notes here...

92 / 114

Adaptive Lasso
The lasso gives all variables the same penalty (λ). The adaptive lasso relaxes this
assumption by allowing each parameter to have a different weight:

Where we use results from an auxiliary regression (OLS, Ridge or LASSO) to make the
weights:

 is not usually estimated, but values 0.5, 1, and 2 are tried to evaluate sensitivity. The only
technical constraint is that . \

argmin
β

∥
∥

∥
∥

y −
p

∑
j−1

xjβj

∥
∥

∥
∥

2

+ λ

p

∑
j=1

wj|βj|

ŵj =
1

|β̂j|
γ

γ

γ > 0 93 / 114

Notes
Type notes here...

94 / 114

Oracle Property
The Adaptive Lasso has been shown to have the Oracle property, that the selection
procedure asymptotically chooses the right model:

True 0 coefficients are estimated as 0 with probability that tends toward 1

True non-zero coefficients are estimated as if the true sub-model were known.

95 / 114

Notes
Type notes here...

96 / 114

Steps for Adaptive LASSO
Estimate the initial coefficients via regression model (OLS, Ridge or LASSO).

Calculate the weights .

Use the weights as input to the LASSO routine.

wj = γ = {0.5, 1, 2}1
|βj|

γ

97 / 114

Notes
Type notes here...

98 / 114

Adaptive LASSO
estimate initial ridge regression and save coefficients
b.ridge <- coef(cv.glmnet(X,y, alpha=0))
calculate weights
gamma <- 1
w.banks <- 1/(abs(b.ridge)^gamma)
estimate the LASSO with the weights
cval <- cv.glmnet(X,y, penalty.factor=w.banks[-1])

coef(cval)

21 x 1 sparse Matrix of class "dgCMatrix"
s1
(Intercept) -1.059584e-17
under5_mort .
area_km2 .
inet_hosts_pc .
inet_users_pc .
enprod_kgcoal_pc .
encons_kgcoal_pc .
elec_prod_kwh_pc .
cement_prod_pc .
nseats_largest_party_leg .
eff_leg .
pct_seats_largest_party .
radios_pc .
tvs_pc .
newspapers_pc .
polity2 .
parl_resp .
popdens .
imports_pc 2.229577e-01
exports_pc .
all_veh_pc 5.418146e-01

99 / 114

Notes
Type notes here...

100 / 114

Adaptive LASSO and Collinearity
b.ridge <- coef(cv.glmnet(scale(coll$X),
 coll$y, alpha=0))
calculate weights
gamma <- 1
w <- 1/(abs(b.ridge)^gamma)
estimate the LASSO with the weights
cval <- cv.glmnet(scale(coll$X),coll$y,
 penalty.factor=w[-1])

101 / 114

Notes
Type notes here...

102 / 114

All predictions
r1 <- glmnet(X, y, alpha=0, lambda=rcv$lambda.mi
g1 <- glmnet(X, y, alpha=1, lambda=cvg$lambda.mi
g3 <- glmnet(X, y, alpha=s[which.min(cv.err)],
 lambda=cvg$lambda.min)
g4 <- glmnet(X, y, alpha=1, penalty.factor=w.ban
 lambda=cval$lambda.min)
yhat <- mod$fitted.values
names(yhat) <- NULL

preds <- tibble(
 ols=yhat,
 ridge = as.vector(predict(r1, newx=X)),
 lasso= as.vector(predict(g1, newx=X)),
 enet = as.vector(predict(g3, newx=X)),
 alasso = as.vector(predict(g4, newx=X)))

ggpairs(preds) + mytheme() + theme_bw()

103 / 114

Notes
Type notes here...

104 / 114

PGI Analysis

105 / 114

Notes
Type notes here...

106 / 114

Inference After Selection
Inference gets much more complicated after model selection, given that variables are often
selected because they are significant predictors. There are a few options for post-selection
inference.

Data Splitting - Split the sample into two halves - select on one set, test on the other.
Most conservative (loss of power due to lower N).

Data Carving - A small proportion of the sample is withheld from training and then the
entire sample is used for testing (Fithian 2014).

Exact post-selection inference possible for Forward Selection Regression and LASSO with
fixed - {SelectiveInferecen} package in R (Tibshirani et al 2014).

Valid post-selection inference for Linear LS Models - implemented in the {PoSI}
package in R (Berk et al 2013)

λ

107 / 114

Notes
Type notes here...

108 / 114

Variable Selection Methods: Cautions (1)
If we have a very large number of predictors and we simply want a parsimonious
predictive model, subset methods and the lasso could be really useful.

When tackling collinearity, however, variable selection may results in a re-specified
model that does not address the original research question (ridge regression could
help).

If the original model is correctly specified, then coefficient estimates following variable
selection are biased. However, the bias may not be overwhelming if you started off with
a severe collinearity problem

109 / 114

Notes
Type notes here...

110 / 114

Variable Selection Methods: Cautions (2)
If our goal is to assess the individual predictors (or their relative impacts), variable
selection models have serious implications

Standard errors calculated following variable selection overstate the precision of
results - they do not control for relevant predictors and they do not account for
model selection uncertainty.
A new sample may give different results, leading to inconsistent interpretation of
"effects"

These models, again, are really about prediction not hypothesis testing, though the can
still be quite valuable.

111 / 114

Notes
Type notes here...

112 / 114

Using Regularization Techniques
Smooth out otherwise complex functions.

Use alternative methods to identify important variables.

Select features that generate accurate predictions with lower variance.

Help solve collinearity problems.

Theory testing? Not so much...

113 / 114

Notes
Type notes here...

114 / 114

