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Goals for Today
1. Discuss feature selection and its relationship with more conventional model testing and

discrimination.
2. Develop all subsets regressions and consider a comparison of models.
3. Describe cross-validation and its utility for helping choose tuning parameters.
4. Discuss regularization and regularized regression models - Ridge regression, the LASSO,

Elastic Net and Adaptive LASSO.
Consider how these models adjudicate collinearity problems.

5. Consider the problem of post-selection inference.
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Feature Selection
Sometimes, we may not want have a couple of different models; instead, we have a bunch
of variables and we want to find out which ones are "important".

Important, in this case, means predictive power - ability to capture variation or
discriminate among values in the dependent variable.
Feature selection automate the process of choosing features based on what "works" in
the data.

Some questions you might have:

Q: Isn't this atheoretical? A: Yes
Q: Isn't this data mining? A: Yes
Q: Isn't this kind of analysis disingenuous? A: It depends.
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Feature Selection: Manually
How many of you have written a paper where you had a theory, that theory produced a
single model specification, the operationalization of the concepts in measures was utterly
uncontroversial and the empirical model was so thoroughly beyond reproach and obviously
useful that no diagnostics were needed?

We generally use ad hoc methods of feature selection.

These are only slightly less problematic - more on volume than principle.

If we're going to use the data to select features, why not go all the way?
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Subset Methods
The goal of subset methods is to examine which subsets give the best fit to the data for a
given number of predictors
Even when the number of variables is large, it is feasible to examine all subsets

If there are  potential predictors, then there are  possible models
Subset techniques have the advantage over stepwise regression of revealing alternative
nearly equivalent models and thus avoid the appearance of a uniquely "correct" result
Several measures can be used to determine the best model subset

AIC
BIC
Mallow's -statistic

p 2p

R2

Cp
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Mallow's Cp Statistic
Mallow's -statistic is defined as:

 is for the full model containing  explanatory variables; RSS  is from the
subset model with  explanatory variables

 is the incremental -test for the hypothesis that the regressors omitted from the
subset have slope 0. If the hypothesis is true, , and thus 

 increases with the residual sum of squares.
A good model, then, has  as close to  as possible
A plot of  against  allows us to choose the model
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Comparison
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Model Selection Example: Ericksen Data (1)
library(leaps)
library(car)
Ericksen <- DAMisc::scaleDataFrame(Ericksen)
X <- model.matrix(undercount ~ .,
  data=Ericksen)[,-1]
y <- model.response(model.frame(undercount
   ~ ., data=Ericksen))
rmods <- regsubsets(x=X, y=y, method="exhaustive",
    all.best=TRUE, nbest=10)
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Model Selection Example: Ericksen Data (3)
Subset selection is implement in R using two packages: leaps and car

Using the regsubsets function, you specify the full model and how many subsets you
want

The subsets function in car graphs the models with the subset size on the horizontal
axis and the statistic used for fit on the vertical axis

The subsets function allows you to specify the following statistics: Mallows  cp,

rsq, adjusted  adjrs2, RSS rss or BIC bic

You can also specify the number of predictors you want in the model (below specifies 3
to 5 predictors)

Cp R2

R2
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Subsets plot for the Ericksen Data
library(car)
subsets(rmods, statistic="cp", legend=F)
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Subsets plot for the Ericksen Data (2)
library(car)
subsets(rmods, statistic="cp", legend=F)
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Subsets plot zoomed in
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We could also consider the models that
have the smallest .

Cp − K

Cp − K

s <- summary(rmods)
K <- rowSums(s$which)
abbrevs <- c("m", "cr", "p", "l", "hg", "hs", "ct", "cn")
mod <- apply(s$which[,-1], 1, function(i)
  paste(abbrevs[which(i)], collapse="-"))
dat <- tibble(
  K=K, 
  Cp = s$cp, 
  adjr2 = s$adjr2, 
  mod = mod,
  diff = Cp-K)
sub <- dat %>% 
  filter(K < 9) %>% 
  slice_min(diff, n=10)

## # A tibble: 10 x 5
##        K    Cp adjr2 mod                 diff
##    <dbl> <dbl> <dbl> <chr>              <dbl>
##  1     8  8.87 0.662 m-cr-p-l-hs-ct-cn  0.874
##  2     7  7.98 0.661 m-cr-p-l-ct-cn     0.983
##  3     8  9.01 0.661 m-cr-p-l-hg-ct-cn  1.01 
##  4     7  8.21 0.660 m-cr-p-l-hg-cn     1.21 
##  5     8  9.27 0.659 m-cr-p-l-hg-hs-cn  1.27 
##  6     6  7.32 0.659 m-cr-p-l-cn        1.32 
##  7     7  8.96 0.656 m-cr-p-l-hs-cn     1.96 
##  8     7  9.41 0.653 m-cr-l-hs-ct-cn    2.41 
##  9     6  8.83 0.651 m-p-l-ct-cn        2.83 
## 10     8 11.4  0.647 m-cr-l-hg-hs-ct-cn 3.41
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Overfit Much?
How do we know we're not overfitting our data?

Sometimes it's obvious - it's hard to argue that you're overfitting when your  is 0.03.
Generally, we don't know.

Cross-validation is a way of trying to protect us against overfitting the model.

R2
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Cross-Validation (1)
If no two observations have the same , a -variable model fit to  observations will fit
the data precisely

Of course, this will lead to biased estimators that are likely to give quite different
predictions on another dataset (generated with the same DGP)
Model validation allows us to assess whether the model is likely to predict accurately on
future observations or observations not used to develop this model

External validation involves retesting the model on new data collected at a different
point in time or from a different population
Internal validation (or cross-validation) involves fitting and evaluating the model
carefully using only one sample

Y p p + 1
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Cross-Validation (2)
Cross-validation is similar to bootstrapping in that it resamples from the original data

The basic form involves randomly dividing the sample into two subsets:
The first subset of the data (screening sample) is used to select or estimate a
statistical model
The second subset is then used to test the findings

Can be helpful in avoiding capitalizing on chance and over-fitting the data - i.e., findings
from the first subset may not always be confirmed by the second subsets
Cross-validation is often extended to use several subsets (either a preset number chosen
by the researcher or leave-one-out cross-validation)
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Cross-Validation (3)
The data are split into  subsets (usually  )
Each of the subsets are left out in turn, with the regression run on the remaining data
Prediction error is then calculated as the sum of the squared errors:

We choose the model with the smallest average "error"

We could also look to the model with the largest average 

k 3 ≤ k ≤ 10

RSS = ∑(Yi − Ŷ i)
2

MSE =
∑(Yi − Ŷ i)

2

n

R2
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Cross-Validation (4)
How many observations should I leave out from each fit?

There is no rule on how many cases to leave out, but Efron (1983) suggests that grouped
cross-validation (with approximately  of the data left out each time) is better than
leave-one-out cross-validation

Number of repetitions

Harrell (2001:93) suggests that one may need to leave  of the sample out 200 times to
get accurate estimates

Cross-validation does not validate the complete sample

External validation, on the other hand, validates the model on a new sample
Of course, limitations in resources usually prohibits external validation in a single study

10%

1
10
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The delta_1 term is the average raw
cross-validation error. The delta_2 term
corrects for using -fold rather than leave-
one-out CV.

Cross-Validation in R
library(boot)
dat <- read.csv("http://www.quantoid.net/files/reg3/weakliem.txt"
  header=T)
dat <- dat[-c(25,49), ]
mod1 <- glm(secpay ~ poly(gini, 3)*democrat, data=dat)
mod2 <- glm(secpay ~ gini*democrat, data=dat)

deltas <- NULL
for(i in 1:25){
deltas <- rbind(deltas, c(
  cv.glm(dat, mod1, K=5)$delta,
  cv.glm(dat, mod2, K=5)$delta)
)}
out <- matrix(colMeans(deltas), ncol=2)
rownames(out) <- c("delta_1", "delta_2")
colnames(out) <- c("Model 1", "Model 2")

##         Model 1 Model 2
## delta_1  0.0212  0.0058
## delta_2  0.0180  0.0057

k
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Tidy CV

cv_fun <- function(split, ...){
  u1 <- update(mod1, data=analysis(split))
  u2 <- update(mod2, data=analysis(split))
  e1_sq <- (assessment(split)$secpay - 
              predict(u1, newdata=assessment(split)))^2
  e2_sq <- (assessment(split)$secpay - 
              predict(u2, newdata=assessment(split)))^2
  tibble(
    err = c(sum(e1_sq), sum(e2_sq)), 
    n = c(length(e1_sq), length(e2_sq)), 
    model = factor(c("poly_int", "linear_int")))
}
library(purrr)
library(rsample)
v <- vfold_cv(dat, v=5, repeats=250) %>%
  mutate(err = map(splits, cv_fun))

v %>% unnest(err) %>% 
  group_by(id, model) %>% 
  summarise(mse = sum(err)/sum(n)) %>% 
  pivot_wider(names_from="model", values_from = "mse") %>% 
  mutate(diff = poly_int - linear_int) %>% 
  ungroup %>% 
  summarise(across(c(linear_int, poly_int), mean), 
            "p(MSE_M1 > MSE_M2)" = mean(diff > 0))

## # A tibble: 1 x 3
##   linear_int poly_int `p(MSE_M1 > MSE_M2)`
##        <dbl>    <dbl>                <dbl>
## 1    0.00578   0.0103                    1
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Cross-validating Span in Loess
We could use cross-validation to tell us something about the span in our Loess model.

First, split the sample into  groups (usually 10).
For each of the  groups, estimate the model on the other 9 and get predictions
for the omitted groups observations. Do this for each of the 10 subsets in turn.
Calculate the CV error: 
Potentially, do this lots of times and average across the CV error.

K
k = 10

∑(yi − ŷ i)
21

n

set.seed(1)
n <- 400
x <- 0:(n-1)/(n-1)
f <- 0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10
y <- f + rnorm(n, 0, sd = 2)
tmp <- data.frame(y=y, x=x)
lo.mod <- loess(y ~ x, data=tmp, span=.75)
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Minimizing CV Criterion Directly

There is also a canned function in fANCOVA that optimizes the span via AICc or GCV.

library(DAMisc)
cvlo <- DAMisc:::cv.lo2
best.span <- optimize(cvlo, c(.05,.95), form=y ~ x, data=tmp,
         numiter=5, K=10)
best.span

## $minimum
## [1] 0.2611968
## 
## $objective
## [1] 3.914841

library(fANCOVA)
best.span2 <- loess.as(tmp$x, tmp$y, criterion="aicc")
best.span2$pars$span

## [1] 0.2136455

best.span3 <- loess.as(tmp$x, tmp$y, criterion="gcv")
best.span3$pars$span

## [1] 0.1483344 41 / 114



Notes
Type notes here...

42 / 114



The Curve
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Manually Cross-Validating  in the Y-J
Transform
Sometimes, optimizing the cross-validation criterion fails.

Randomness in the CV procedure can produce a function that has several local minima.
You could force the same random split at every evaluation by hand-coding the CV, but
this might not be the best idea.
If optimization of the CV criterion fails, you could always do it manually.

λ
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Example
cvoptim_yj <- function(pars, form, data, trans.vars, K=5, numiter=10){
    require(boot)
      require(VGAM)
    form <- as.character(form)
    for(i in 1:length(trans.vars)){
        form <- gsub(trans.vars[i], paste("yeo.johnson(", trans.vars[i], 
        ",", pars[i], ")", sep=""), form)
    }
    form <- as.formula(paste0(form[2], form[1], form[3]))
    m <- glm(as.formula(form), data, family=gaussian)
    d <- lapply(1:numiter, function(x)cv.glm(data, m, K=K))
    mean(sapply(d, function(x)x$delta[1]))    
}

lams <- seq(0,2, by=.1)
s <- sapply(lams, function(x)cvoptim_yj(x, form=prestige ~ income + education + women, 
    data=Prestige, trans.vars="income", K=3))
ggplot() + 
  geom_line(mapping=aes(y=s, x=lams)) + 
  theme_bw() + 
  mytheme() + 
  labs(x="Lambda", y="CV Error")

47 / 114



Notes
Type notes here...

48 / 114



Figure
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Shrinkage Estimators
Shrinkage estimators can reduce sampling variability and sometimes improve model fit
(particularly in the presence of collinearity).

Shrinkage estimators impose constraints on the fitted model (particularly on the size of
the coefficients).
The result of these constraints is to shrink the estimates toward zero.
Ridge Regression and the LASSO are the two most prominent shrinkage estimators.

NB: these are biased estimators, so they might be good for stabilizing predictions, but they
won't be particularly good for more conventional theory testing.
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Ridge Regression
Ridge Regression minimizes the following function:

 is a tuning parameter that governs the relative of RSS and the penalty on fitting the
regression surface.
As , the estimates get increasingly close to the OLS estimates.
As , the estimates get increasingly close to zero.

The choice of  is important and is often done with cross-validation.

N

∑
i=1

(yi − β0 +
p

∑
j=1

βjxij)

2

+ λ

p

∑
j=1

β2
j

λ

λ → 0
λ → ∞

λ
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CV MSE
library(glmnet)
library(ggplot2)
library(rio)
library(tidyr)
banks99 <- import(
  "http://quantoid.net/files/reg3/banks99.dta")
banks99s <- scaleDataFrame(banks99[,-c(1,2,4)])
X <- scale(model.matrix(gdppc_mp ~. , data=banks99s))[,-1]
y <- model.response(model.frame(gdppc_mp ~. , data=banks99s))

library(glmnet)
loglam <- seq(6.8, -5, length=100)
g1 <- glmnet(X, y, alpha=0)

rcv <- cv.glmnet(X, y, alpha=0, lambda=exp(loglam))
plot(rcv)
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CV MSE (2)
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CV with Ridge Regression
r <- glmnet(X, y, alpha=0, lambda=exp(loglam))
ridge.mod <- glmnet(X,y, alpha=0, lambda=rcv$lambda.min)
mod <- lm(y ~ X)

l2o <- sqrt(sum(coef(mod)^2))
l2r <- apply(r$beta, 2, function(x)sqrt(sum(x^2)))
br <- r$beta %>% as.matrix %>% t %>% as.data.frame
br$ratio <- l2r/l2o
br <- br %>% pivot_longer(under5_mort:all_veh_pc, names_to="variable", values_to="coef")
ggplot(br, aes(x=ratio, y=coef)) + 
  geom_line() + 
  geom_vline(xintercept=(l2r/l2o)[87], lty=2) + 
  geom_hline(yintercept=0, linetype=3) + 
  facet_wrap(~variable) + 
  theme_bw() + 
  mytheme(panel.grid=element_blank()) + 
  labs(x="Ratio of L2(ridge)/L2(OLS)", y="Coefficient")
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Plot
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Collinearity
set.seed(1234)
Sig <- diag(5)
Sig[3:5,3:5] <- .99
diag(Sig) <- 1
X <- MASS::mvrnorm(500,rep(0,5), Sig)
b <- c(1,1,1,0,0)
ystar <- X %*% b
y <- ystar + rnorm(500, 0, 2)

summary(m1 <- lm(y~ X))

## 
## Call:
## lm(formula = y ~ X)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4195 -1.3696 -0.0068  1.4012  5.3665 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.01686    0.08762   0.192   0.8475    
## X1           1.17283    0.09359  12.532   <2e-16 ***
## X2           1.11657    0.09163  12.185   <2e-16 ***
## X3           1.21441    0.69342   1.751   0.0805 .  
## X4           1.04118    0.68252   1.525   0.1278    
## X5          -1.09301    0.70047  -1.560   0.1193    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.953 on 494 degrees of freedom
## Multiple R-squared:  0.469,    Adjusted R-squared:  0.4637 
## F-statistic: 87.28 on 5 and 494 DF,  p-value: < 2.2e-16
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Collinearity (2)
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Collinearity (3)
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Prediction Variances
library(boot)
df <- cbind(y, X)
boot.ridge <- function(data, inds, ...){
  tmp <- data[inds,]
  y <- tmp[,1]
  X <- tmp[,-1]
  out <- glmnet(X,y,alpha=0, lambda=.8736)
  as.vector(coef(out))
}
br <- boot(statistic=boot.ridge, 
           data=df, R=100)
v <- var(br$t)
pred.vars <- diag(cbind(1, X) %*% 
                    v %*% t(cbind(1,X)))
lm.vars <- diag(cbind(1, X) %*% 
                  vcov(m1) %*% t(cbind(1,X)))
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Predictions
summary(pred.vars/lm.vars)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.1473  0.4181  0.5551  0.5619  0.6800  1.2081

ridge.preds <- cbind(1, X) %*% coef(r2) 
lm.preds <- cbind(1,X) %*% coef(m1)
cor(as.vector(lm.preds), as.vector(ridge.preds))

## [1] 0.9847665
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LASSO (the L1 norm)
The LASSO (Least Absolute Shrinkage and Selection Operator) is another regularization
method for estimating regression.

Uses a different penalty than ridge regression:

Doesn't necessarily use all of the variables (i.e., some coefficients could be zero)

Since not all variables are used in each fit, bootstrapping is more problematic here
(though not impossible).

N

∑
i=1

(yi − β0 +
p

∑
j=1

βjxij)

2

+ λ

p

∑
j=1

|βj|
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The LASSO in R
banks99 <- import(
  "http://quantoid.net/files/reg3/banks99.dta")
banks99s <- scaleDataFrame(banks99[,-c(1,2,4)])
X <- scale(model.matrix(gdppc_mp ~. , data=banks99s))[,-1]
y <- model.response(model.frame(gdppc_mp ~. , data=banks99s))

loglam <- seq(6.8, -5, length=100)
cvg <- cv.glmnet(X,y, lambda=exp(loglam))
g <- glmnet(X, y, lambda=cvg$lambda.min)

round(cbind(coef(cvg), coef(mod)), 4)

## 21 x 2 sparse Matrix of class "dgCMatrix"
##                              s1        
## (Intercept)              0.0000  0.0000
## under5_mort              .       0.0214
## area_km2                 .       0.1365
## inet_hosts_pc            .      -0.0032
## inet_users_pc            0.1022  0.1813
## enprod_kgcoal_pc         .       0.2801
## encons_kgcoal_pc         0.0125 -0.2730
## elec_prod_kwh_pc         .       0.1422
## cement_prod_pc           .       0.0073
## nseats_largest_party_leg .       0.1520
## eff_leg                  .      -0.0026
## pct_seats_largest_party  .       0.0250
## radios_pc                .       0.0140
## tvs_pc                   .      -0.0025
## newspapers_pc            .      -0.0930
## polity2                  .       0.0765
## parl_resp                .      -0.0853
## popdens                  .       0.0607
## imports_pc               0.1844  0.2825
## exports_pc               .       0.1673
## all_veh_pc               0.4832  0.5060
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Regularization path
r <- glmnet(X, y, alpha=0, lambda=exp(loglam))
g <- glmnet(X, y, alpha=1, lambda=exp(loglam))
mod <- lm(y ~ X)

br1 <- r$beta %>% as.matrix %>% t %>% as.data.frame
br2 <- g$beta %>% as.matrix %>% t %>% as.data.frame
br1$lambda <- br2$lambda <- loglam
br1 <- br1 %>% pivot_longer(under5_mort:all_veh_pc, names_to="variable", values_to="coef")
br2 <- br2 %>% pivot_longer(under5_mort:all_veh_pc, names_to="variable", values_to="coef")
br1$model <- factor(1, levels=c(1,2), labels=c("Ridge", "LASSO"))
br2$model <- factor(2, levels=c(1,2), labels=c("Ridge", "LASSO"))

br <- bind_rows(br1, br2)

ggplot(br, aes(x=lambda, y=coef, colour=model)) + 
  geom_line() + 
  facet_wrap(~variable, scales="free_y") + 
  geom_vline(xintercept=log(rcv$lambda.min), col=pal2[1], lty=3) + 
  geom_vline(xintercept=log(cvg$lambda.min), col=pal2[2], lty=3) + 
  geom_hline(yintercept=0, linetype=3) + 
  scale_colour_manual(values=pal2) + 
  theme_bw() + 
  mytheme(panel.grid=element_blank()) + 
  labs(x="log(Lambda)", y="Coefficient")
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Plot
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Predictions

r1 <- glmnet(X, y, alpha=0, lambda=rcv$lambda.mi
g1 <- glmnet(X, y, alpha=1, lambda=cvg$lambda.mi
yhat <- mod$fitted.values
names(yhat) <- NULL

preds <- tibble(
  ols=yhat, 
  ridge = as.vector(predict(r1, newx=X)), 
  lasso= as.vector(predict(g1, newx=X))
)

ggpairs(preds) + mytheme() + theme_bw()
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LASSO and collinearity
cvg2 <- cv.glmnet(scale(coll$X), coll$y, alpha=1
g2 <- glmnet(scale(coll$X), coll$y, 
             alpha=1, lambda=cvg2$lambda.min)
r2 <- glmnet(scale(coll$X), coll$y, 
             alpha=0, lambda=rcv2$lambda.1se)
coefs <- tibble(
  b = c(as.vector(m1$coef), as.vector(coef(r2)),
        as.vector(coef(g2))), 
  model = factor(rep(1:3, each=length(coef(m1)))
          labels=c("LM", "Ridge", "LASSO")), 
  variable = rep(names(m1$coef), 3))
p1 <- ggplot(coefs, aes(x=b, y=variable, 
                  colour=model, shape=model)) + 
  geom_point(size=3) + 
  theme_bw() + 
  scale_colour_manual(values=pal5[1:3]) + 
  geom_vline(xintercept=0, lty=3)+ 
  mytheme()
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Elastic Net
The Elastic Net is a compromise between Ridge and LASSO regression:

LASSO: , Ridge: 

 can be chosen a priori or you can experiment with several different values.

Often setting  close to, but not exactly, 1 has nice properties.

min
β0,β

N

∑
i=1

wil(yi, β0 + βT xi) + λ [(1 − α)||β||22/2 + α||β||1] ,
1

N

α = 1 α = 0

α

α

85 / 114



Notes
Type notes here...

86 / 114



Elastic Net in Action
cv.enet <- list()
s <- seq(0.01, .99, length=25)
for(i in 1:length(s)){
    cv.enet[[i]] <- cv.glmnet(X, y, alpha = s[i])
}
cv.err <- sapply(cv.enet, function(x)min(x$cvm))
s[which.min(cv.err)]

## [1] 0.01

b <- sapply(cv.enet[c(1,7,25)], 
    function(x)as.matrix(coef(x)))

plot.dat <- data.frame(
    b = c(b), 
    group = as.factor(rep(c(.010,.255,.990), 
        each = 21)),
    var = factor(rep(
        rownames(coef(cv.enet[[1]])), 3)))
library(ggplot2)
g <- ggplot(plot.dat, aes(x=b, 
    y=reorder(var, b, mean))) + 
    geom_point() + 
    scale_colour_manual(values=pal3) +
    theme_bw() + 
    facet_wrap(~group, nrow=1) + 
    mytheme() + 
    ylab("") 87 / 114
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Figure
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Elastic Net and Collinearity
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Adaptive Lasso
The lasso gives all variables the same penalty ($\lambda$). The adaptive lasso relaxes this
assumption by allowing each parameter to have a different weight:

Where we use results from an auxiliary regression (OLS, Ridge or LASSO) to make the
weights:

 is not usually estimated, but values 0.5, 1, and 2 are tried to evaluate sensitivity. The only
technical constraint is that . \

argmin
β

∥
∥

∥
∥

y −
p

∑
j−1

xjβj

∥
∥

∥
∥

2

+ λ

p

∑
j=1

wj|βj|

ŵj =
1

|β̂j|
γ

γ
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Oracle Property
The Adaptive Lasso has been shown to have the Oracle property, that the selection
procedure asymptotically chooses the right model:

True 0 coefficients are estimated as 0 with probability that tends toward 1

True non-zero coefficients are estimated as if the true sub-model were known.

95 / 114



Notes
Type notes here...

96 / 114



Steps for Adaptive LASSO
Estimate the initial coefficients via regression model (OLS, Ridge or LASSO).

Calculate the weights .

Use the weights as input to the LASSO routine.

wj = γ = {0.5, 1, 2}1
|βj|

γ
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Adaptive LASSO
# estimate initial ridge regression and save coefficients
b.ridge <- coef(cv.glmnet(X,y, alpha=0))
# calculate weights
gamma <- 1
w.banks <- 1/(abs(b.ridge)^gamma)
# estimate the LASSO with the weights
cval <- cv.glmnet(X,y, penalty.factor=w.banks[-1])

coef(cval)

## 21 x 1 sparse Matrix of class "dgCMatrix"
##                                     s1
## (Intercept)              -1.059584e-17
## under5_mort               .           
## area_km2                  .           
## inet_hosts_pc             .           
## inet_users_pc             .           
## enprod_kgcoal_pc          .           
## encons_kgcoal_pc          .           
## elec_prod_kwh_pc          .           
## cement_prod_pc            .           
## nseats_largest_party_leg  .           
## eff_leg                   .           
## pct_seats_largest_party   .           
## radios_pc                 .           
## tvs_pc                    .           
## newspapers_pc             .           
## polity2                   .           
## parl_resp                 .           
## popdens                   .           
## imports_pc                2.229577e-01
## exports_pc                .           
## all_veh_pc                5.418146e-01
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Adaptive LASSO and Collinearity
b.ridge <- coef(cv.glmnet(scale(coll$X),
                          coll$y, alpha=0))
# calculate weights
gamma <- 1
w <- 1/(abs(b.ridge)^gamma)
# estimate the LASSO with the weights
cval <- cv.glmnet(scale(coll$X),coll$y, 
                  penalty.factor=w[-1])
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All predictions
r1 <- glmnet(X, y, alpha=0, lambda=rcv$lambda.mi
g1 <- glmnet(X, y, alpha=1, lambda=cvg$lambda.mi
g3 <- glmnet(X, y, alpha=s[which.min(cv.err)], 
             lambda=cvg$lambda.min)
g4 <- glmnet(X, y, alpha=1, penalty.factor=w.ban
             lambda=cval$lambda.min)
yhat <- mod$fitted.values
names(yhat) <- NULL

preds <- tibble(
  ols=yhat, 
  ridge = as.vector(predict(r1, newx=X)), 
  lasso= as.vector(predict(g1, newx=X)), 
  enet = as.vector(predict(g3, newx=X)),
  alasso = as.vector(predict(g4, newx=X)))

ggpairs(preds) + mytheme() + theme_bw()
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PGI Analysis

105 / 114



Notes
Type notes here...

106 / 114



Inference After Selection
Inference gets much more complicated after model selection, given that variables are often
selected because they are significant predictors. There are a few options for post-selection
inference.

Data Splitting - Split the sample into two halves - select on one set, test on the other.
Most conservative (loss of power due to lower N).

Data Carving - A small proportion of the sample is withheld from training and then the
entire sample is used for testing (Fithian 2014).

Exact post-selection inference possible for Forward Selection Regression and LASSO with
fixed  - {SelectiveInferecen} package in R (Tibshirani et al 2014).

Valid post-selection inference for Linear LS Models - implemented in the {PoSI}
package in R (Berk et al 2013)

λ
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Variable Selection Methods: Cautions (1)
If we have a very large number of predictors and we simply want a parsimonious
predictive model, subset methods and the lasso could be really useful.

When tackling collinearity, however, variable selection may results in a re-specified
model that does not address the original research question (ridge regression could
help).

If the original model is correctly specified, then coefficient estimates following variable
selection are biased. However, the bias may not be overwhelming if you started off with
a severe collinearity problem
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Variable Selection Methods: Cautions (2)
If our goal is to assess the individual predictors (or their relative impacts), variable
selection models have serious implications

Standard errors calculated following variable selection overstate the precision of
results - they do not control for relevant predictors and they do not account for
model selection uncertainty.
A new sample may give different results, leading to inconsistent interpretation of
"effects"

These models, again, are really about prediction not hypothesis testing, though the can
still be quite valuable.
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Using Regularization Techniques
Smooth out otherwise complex functions.

Use alternative methods to identify important variables.

Select features that generate accurate predictions with lower variance.

Help solve collinearity problems.

Theory testing? Not so much...
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