
Regression III
Splines

Dave Armstrong

Goals for Today
1. Develop the idea of splines as piecewise regression functions.

Motivate with piecewise linear model.
2. Consider truncated power basis functions for cubic regression splines.

How and where should knots be placed?
3. Discuss other more robust bases - B-splines.
4. Show an example of regression splines at work.

2 / 82

Definition of Splines
Splines are:

... piecewise regression functions we constrain to join at points called knots (Keele
2007, 70)

In their simplest form, they are dummy regressors that we use to force the regression
line to change direction at some value(s) of .
These are similar in spirit to LPR models where we use a subset of data to fit local
regressions (but the window doesn't move here).
These are also allowed to take any particular functional form, but they are a bit more
constrained than the LPR model.

X

3 / 82

Notes
Type notes here...

4 / 82

Splines vs. LPR Models
Splines provide a better MSE fit to the data.

Where

Generally, LPR models will have smaller bias, but much greater variance.

Splines can be designed to prevent over-fitting (smoothing splines)

Splines are more easily incorporated in semi-parametric models.

MSE (θ̂) = Var(θ̂)+ Bias(θ̂ , θ)
2

5 / 82

Notes
Type notes here...

6 / 82

We start with the following familiar model:

Here, we would like to estimate this with
one model rather than a series of local
models.

Regression Splines

y = f(x) + ε

7 / 82

Notes
Type notes here...

8 / 82

Failure of Polynomials and LPR
Given what we already learned, we could fit a quadratic polynomial or a LPR:

9 / 82

Notes
Type notes here...

10 / 82

You might ask, couldn't we just use an
interaction between and a dummy
variable coded 1 if and zero
otherwise.

This seems like a perfectly reasonable
thing to do. What can it give you though:

Dummy Interaction

x
x > 60

y = b0 + b1x1 + b2d + b3x × d + e

11 / 82

Notes
Type notes here...

12 / 82

Basis Functions
A basis function is really just a function that transforms the values of X. So, instead of
estimating:

we estimate:

The basis functions are known ahead of time (not estimated by the model).

We can think of polynomials as basis functions where

yi = β0 + β1xi + εi

yi = β0 + β1b1(xi) + β2b2(xi) + … + βkbk(xi) + εi

bk(⋅)

bj(xi) = x
j

i

13 / 82

Notes
Type notes here...

14 / 82

Piecewise Polynomials
One way that we can think about regression splines is as piecewise polynomial functions:

Just as above though, these polynomials are unconstrained and can generate a
discontinuity at the knot location .

yi = {
β01 + β11xi + β21x

2
i

+ β31x
3
i

+ εi xi < c

β02 + β12xi + β22x
2
i

+ β32x
3
i

+ εi xi ≥ c

c

15 / 82

Notes
Type notes here...

16 / 82

Constraining the Model
To constrain the model, the splines are constructed:

such that the first and second derivatives of the function continuous.

Each constraint reduces the number of degrees of freedom we use by one.

In general, the model uses: Polynomial Degree # Knots 1 (for the intercept)
degrees of freedom

+ +

17 / 82

Notes
Type notes here...

18 / 82

Truncated Power Basis Functions
The easiest set of Spline functions to consider (for knot location) are called truncated
power functions, defined as:

When using these basis functions in, we put the full (i.e., global) parametric function in and
a truncated power function of degree for each knot.

k

h(x, k) = (x − k)3
+ = {

(x − k)3 if x > k

0 otherwise

n

19 / 82

Notes
Type notes here...

20 / 82

Linear Truncated Power Functions
To use the truncated power basis for our problem, we need:

The global linear model
One truncated power function for the values greater than the knot location (60).

This sets up essentially 2 equations:

Notice that here we are only estimating 3 parameters, where the interaction would estimate
4 parameters. Thus, this is a constrained version of the interaction.

x

y = b0 + b1x + b2(x − 60)1
+ + e

x ≤ 60 :y = b0 + b1x

x > 60 :y = b0 + b1x + b2(x − 60) = (b0 − 60b2) + (b1 + b2)x

21 / 82

Notes
Type notes here...

22 / 82

Fixing the Discontinuity
Including and as regressors, which generates the following predictions:x (x − 60)+

pwl <- function(x, k)ifelse(x >= k, x-k, 0)

ggplot(mapping=aes(x=x, y=y)) +
 geom_smooth(method="lm",
 formula=y ~ x + pwl(x, 60)) +
 geom_point() +
 theme_bw() +
 mytheme()

23 / 82

Notes
Type notes here...

24 / 82

Thinking back to the Polity example from
Lecture 4. We suggested we maybe could
fit a piecewise polynomial model:

Polity Example

library(foreign)
dat <- read.dta("http://www.quantoid.net/files/reg3/linear_ex.dta
dat$polity_dem_fac <- as.factor(dat$polity_dem)
unrestricted.mod <- lm(rep1 ~ polity_dem_fac + iwar +
 cwar + logpop + gdppc,data=dat)
pwlin.mod <- lm(rep1 ~ polity_dem + pwl(polity_dem, 9) +
 iwar + cwar + logpop + gdppc,data=dat)
anova(pwlin.mod, unrestricted.mod, test="F")

Analysis of Variance Table

Model 1: rep1 ~ polity_dem + pwl(polity_dem, 9) + iwar + cwar + logpop +
gdppc
Model 2: rep1 ~ polity_dem_fac + iwar + cwar + logpop + gdppc
Res.Df RSS Df Sum of Sq F Pr(>F)
1 2676 2172.9
2 2668 2163.3 8 9.651 1.4878 0.1562

25 / 82

Notes
Type notes here...

26 / 82

If you don't know the knot location, you
could try a bunch of different options.

Unknown Knot Location

cvfun <- function(split, ...){
 mods <- lapply(1:9, function(i){
 lm(rep1 ~ polity_dem + pwl(polity_dem, i) +
 iwar + cwar + logpop + gdppc,
 data= analysis(split))})
yhat <- sapply(mods, function(x)predict(x, newdata=assessment(spl
y <- assessment(split)$rep1
e <- apply(yhat, 2, function(z)(y-z)^2)
sume2 <- colSums(e)
n <- length(y)
tibble(knot = 1:9, e2 = sume2, n = rep(n, 9))
}
out <- dat %>%
 vfold_cv(v=10, repeats=3) %>%
 mutate(err = map(splits, cvfun)) %>%
 unnest(err) %>%
 group_by(id, knot) %>%
 summarise(mse = sum(e2)/sum(n)) %>%
 ungroup %>%
 group_by(knot) %>%
 summarise(mse = mean(mse))

aics <- sapply(1:9, function(i)
 AIC(lm(rep1 ~ polity_dem + pwl(polity_dem, i) +
 iwar + cwar + logpop + gdppc,
 data= dat)))
out <- out %>%
 mutate(aic = aics)

out

A tibble: 9 x 3
knot mse aic
<int> <dbl> <dbl>
1 1 0.934 7431.
2 2 0.929 7417.
3 3 0.919 7387.
4 4 0.907 7354.
5 5 0.900 7331.
6 6 0.887 7293.
7 7 0.868 7235.
8 8 0.840 7145.
9 9 0.815 7064.

27 / 82

Notes
Type notes here...

28 / 82

Example: Cubic Spline
Consider the following relationship:

29 / 82

Notes
Type notes here...

30 / 82

Cubic Spline

Let's consider our example with 3 knots

y = b0 + b1x + b2x
2 + b3x

3 +

knots

∑
m−1

bk+3(x − km)3
+

k = {.2, .4, .6, .8}

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.602e-02 6.836e-01 0.126 0.8999
x -3.885e+00 1.894e+01 -0.205 0.8376
I(x^2) 5.772e+02 1.386e+02 4.164 3.84e-05 ***
I(x^3) -1.703e+03 2.877e+02 -5.921 6.99e-09 ***
I((x - k[1])^3 * (x >= k[1])) 2.771e+03 3.789e+02 7.314 1.48e-12 ***
I((x - k[2])^3 * (x >= k[2])) -1.474e+03 1.821e+02 -8.094 7.36e-15 ***
I((x - k[3])^3 * (x >= k[3])) 3.866e+02 1.821e+02 2.123 0.0344 *
I((x - k[4])^3 * (x >= k[4])) 7.080e+02 3.789e+02 1.869 0.0624 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard deviation: 1.951 on 392 degrees of freedom
Multiple R-squared: 0.6665
F-statistic: 111.9 on 7 and 392 DF, p-value: < 2.2e-16
AIC BIC
1679.71 1715.63

31 / 82

Notes
Type notes here...

32 / 82

Predictions

33 / 82

Notes
Type notes here...

34 / 82

Problems with Truncated Power Basis
Functions

Highly collinear and can lead to instability and singularities (i.e., computationally bad
stuff) at worst.
Not as "local" as some other options, the support of the piecewise functions can be over
the whole range of the data or nearly the whole range of the data.
Can produce erratic tail behavior.

Other basis functions, like the B-spline basis functions solve all of these problems:

Reduces collinearity (though doesn't eliminate it)
Support of the function is more narrowly bounded.
Uses knots at the boundaries of and assumes linearity beyond the knots.x

35 / 82

Notes
Type notes here...

36 / 82

Notice that the fit here is precisely the
same as with the the truncated power
basis functions

Example: B-spline
library(splines)
k <- c(.2,.4,.6,.8)
csmod2 <- lm(y ~ bs(x, knots=k))
S(csmod2, brief=TRUE)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.08602 0.68358 0.126 0.8999
bs(x, knots = k)1 -0.25898 1.26296 -0.205 0.8376
bs(x, knots = k)2 14.61385 0.80729 18.102 < 2e-16 ***
bs(x, knots = k)3 1.33876 0.96742 1.384 0.1672
bs(x, knots = k)4 3.73773 0.83755 4.463 1.06e-05 ***
bs(x, knots = k)5 2.30614 1.01655 2.269 0.0238 *
bs(x, knots = k)6 -1.83334 0.99321 -1.846 0.0657 .
bs(x, knots = k)7 0.80657 0.97507 0.827 0.4086

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard deviation: 1.951 on 392 degrees of freedom
Multiple R-squared: 0.6665
F-statistic: 111.9 on 7 and 392 DF, p-value: < 2.2e-16
AIC BIC
1679.71 1715.63

p1 <- predict(csmod, se=TRUE)
p2 <- predict(csmod2, se=TRUE)
cor(p1$fit, p2$fit)

[1] 1

cor(p1$se.fit, p2$se.fit)

[1] 1

37 / 82

Notes
Type notes here...

38 / 82

Interpreting Spline Coefficients
So, how do you interpret the spline coefficients?

You don't.
Remember that these are all functions of , so we cannot change the values of one
component of the basis function while holding the others constant, the others would
have to change, too.

x

39 / 82

Notes
Type notes here...

40 / 82

Choices in Spline Models
Degree: the analyst has to choose the degree of the polynomial fit to the subsets of the
data.
Number of knots: the analyst has to choose the number of knots
Location of knots: Often, knots are spaced evenly over the support of the data (i.e., the
range of), but that needn't be the case.

Knot placement can be guided by theory if possible.
Otherwise, for the functions we generally need to estimate, a few knots should
probably work just fine.

x

41 / 82

Notes
Type notes here...

42 / 82

How important is knot placement?
I did a simulation where I did the following:

Using the function created above, I first estimated a -spline with 1-10 knots.
Then, I calculated the with respect to the true point location.

For each number of knots, randomly draw knots from a uniform distribution.
Estimate the model and calculate with respect to the truth.

B
R2

R2

43 / 82

Notes
Type notes here...

44 / 82

Results

45 / 82

Notes
Type notes here...

46 / 82

How Important is Knot Placement? II
So long as the polynomial degree is reasonably high (3 should be high enough for what
we do, but 4 might be useful if you have a very complicated function), knot placement is
not particularly important.
Use theory, if it exists, to place knots.
If theory doesn't exist, knots placed evenly across the range of will, in general,
minimize error.
If you think about the knots as random variables (because we don't know their values)
and further that they are distributed uniformly (i.e., neither middle or extreme values
are more likely), then technically evenly spaced knots minimize distance to the true, but
unknown knots.

x

47 / 82

Notes
Type notes here...

48 / 82

How Important is Polynomial Degree?
Pretty important, particularly if we don't know or have a really good sense of where the
knots should be.
B-splines are more forgiving of knot placement errors the higher the polynomial degree.
Generally no good reason to use something more restrictive than a cubic spline.
We are generally not trying to model particularly complicated functions.
More knots are more likely to be used than a higher polynomial degree to make the
function more flexible.

49 / 82

Notes
Type notes here...

50 / 82

How Important is the Number of Knots
Flexibility increases with number of knots and polynomial degree.

Increasing number of knots can make the function more flexible.

We can use AIC, BIC or Cross-Validation to choose number of knots.

51 / 82

Notes
Type notes here...

52 / 82

Choosing Number of Knots

53 / 82

Notes
Type notes here...

54 / 82

Worked Example
library(car)
library(rio)
dat <- import(
 "http://www.quantoid.net/files/reg3/jacob.dta")

rawlm <- lm(chal_vote ~ perotvote + chal_spend +
 exp_chal, data=dat)

55 / 82

Notes
Type notes here...

56 / 82

Raw Model
S(rawlm, brief=TRUE)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.95365 1.59703 9.990 < 2e-16 ***
perotvote 0.31943 0.06655 4.800 2.48e-06 ***
chal_spend 3.33294 0.27869 11.959 < 2e-16 ***
exp_chal 2.22053 0.98576 2.253 0.025 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard deviation: 6.74 on 308 degrees of freedom
Multiple R-squared: 0.4552
F-statistic: 85.8 on 3 and 308 DF, p-value: < 2.2e-16
AIC BIC
2082.02 2100.74

57 / 82

Notes
Type notes here...

58 / 82

C+R Plots
crPlots(rawlm, layout=c(1,3))

59 / 82

Notes
Type notes here...

60 / 82

Transformation Model
boxTidwell(chal_vote ~ perotvote,
 ~ chal_spend + exp_chal, data=dat)

MLE of lambda Score Statistic (z) Pr(>|z|)
-1.0634 -4.1129 3.908e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

iterations = 9

trans.mod <- lm(chal_vote ~ I(1/perotvote) +
 chal_spend + exp_chal, data=dat)
S(trans.mod, brief=TRUE)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.0997 1.4276 18.983 < 2e-16 ***
I(1/perotvote) -74.0400 11.6678 -6.346 7.9e-10 ***
chal_spend 3.1989 0.2737 11.687 < 2e-16 ***
exp_chal 2.2218 0.9610 2.312 0.0214 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard deviation: 6.571 on 308 degrees of freedom
Multiple R-squared: 0.4822
F-statistic: 95.6 on 3 and 308 DF, p-value: < 2.2e-16
AIC BIC 61 / 82

Notes
Type notes here...

62 / 82

C+R Plots
crPlots(trans.mod, layout=c(1,3))

63 / 82

Notes
Type notes here...

64 / 82

Degrees of Freedom
library(DAMisc)
nkp <- NKnots(chal_vote ~ chal_spend + exp_chal,
 "perotvote", max.knots=3, data=dat, includePol
 criterion="CV", plot=FALSE, cviter=10)
nkp$df <- 1:6
nkp$min <- factor(ifelse(nkp$stat == min(nkp$sta
 levels=c(0,1),
 labels=c("Other", "Minimum"))

65 / 82

Notes
Type notes here...

66 / 82

Polynomial
poly.mod <- lm(chal_vote ~ poly(perotvote, 3) +
 chal_spend + exp_chal, data=dat)
S(poly.mod, brief=TRUE)

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.6040 1.1222 20.143 < 2e-16 ***
poly(perotvote, 3)1 33.2168 6.6421 5.001 9.63e-07 ***
poly(perotvote, 3)2 -25.5074 6.5992 -3.865 0.000136 ***
poly(perotvote, 3)3 11.8753 6.6112 1.796 0.073444 .
chal_spend 3.2001 0.2738 11.688 < 2e-16 ***
exp_chal 2.2016 0.9613 2.290 0.022683 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard deviation: 6.571 on 306 degrees of freedom
Multiple R-squared: 0.4856
F-statistic: 57.76 on 5 and 306 DF, p-value: < 2.2e-16
AIC BIC
2068.16 2094.36

67 / 82

Notes
Type notes here...

68 / 82

More CR Plots
crPlots(poly.mod, layout=c(1,3))

69 / 82

Notes
Type notes here...

70 / 82

Which is better?
library(clarkeTest)
clarke_test(trans.mod, poly.mod)

Clarke test for non-nested models

Model 1 log-likelihood: -1028
Model 2 log-likelihood: -1027
Observations: 312
Test statistic: 207 (66%)

Model 1 is preferred (p = 8e-09)

71 / 82

Notes
Type notes here...

72 / 82

Challenger Spending
boxTidwell(chal_vote ~ chal_spend,
 ~ I(1/perotvote) + exp_chal,
 data=dat)

MLE of lambda Score Statistic (z) Pr(>|z|)
2.2987 3.7127 0.0002051 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

iterations = 5

boxTidwell(chal_vote ~ I(chal_spend^2),
 ~ I(1/perotvote) + exp_chal,
 data=dat)

MLE of lambda Score Statistic (z) Pr(>|z|)
1.1495 0.8603 0.3896

iterations = 4

trans.mod2 <- lm(chal_vote ~I(chal_spend^2) +
 I(1/perotvote) + exp_chal, data=dat)

73 / 82

Notes
Type notes here...

74 / 82

Degrees of Freedom
library(DAMisc)
nkp <- NKnots(chal_vote ~ I(1/perotvote) + exp_c
 "chal_spend", max.knots=3, data=dat, includePo
 criterion="CV", plot=FALSE, cviter=10)
nkp$df <- 1:6
nkp$min <- factor(ifelse(nkp$stat == min(nkp$sta
 levels=c(0,1),
 labels=c("Other", "Minimum"))

75 / 82

Notes
Type notes here...

76 / 82

Spline Model
spline.mod <- dat %>%
 mutate(inv_perotvote = 1/perotvote) %>%
 lm(chal_vote ~ inv_perotvote +
 bs(chal_spend, df=4) +
 exp_chal, data=.)
anova(trans.mod2, spline.mod, test="F")

Analysis of Variance Table

Model 1: chal_vote ~ I(chal_spend^2) + I(1/perotvote) + exp_chal
Model 2: chal_vote ~ inv_perotvote + bs(chal_spend, df = 4) + exp_chal
Res.Df RSS Df Sum of Sq F Pr(>F)
1 308 12816
2 305 12208 3 608.53 5.0679 0.001939 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

77 / 82

Notes
Type notes here...

78 / 82

Effects

79 / 82

Notes
Type notes here...

80 / 82

Redux
Splines can be a good way to ...

Fit models that cannot be easily fit by other simpler parametric forms still within the
OLS/GLM framework.
Test a wider array of possible alternative functional forms.

81 / 82

Notes
Type notes here...

82 / 82

