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Outline for Linearity Discussion

1. The linearity assumption

2. Diagnosis of un-modeled non-linearity (CR Plots, Smoothers)

3. Simple remedies for un-modeled non-linearity (transformations,
polynomials).

4. More complicated remedies for un-modeled non-linearities
(splines, ALSOS).

• For their own sake in modeling non-linearities.
• For use in testing theories about functional form.
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The Linearity Assumption

Perhaps the most important assumption of the linear model is that
the relationship between � and x is accurately described by a line.

�i = �0 + �1xi + �i

This allows us to:

1. Characterize the relationship between � and x with a single (or
small set of) numbers.

2. Easily interpret the marginal e↵ect of x .

3. Easily present the results of the modeling enterprise.
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Diagnosing Non-Linearity

We are often interested in the extent to which data we observe follow
the assumption of linearity.

• Binary variables are always linearly related to the observed
variables (two points define a line)

• Binary regressors operationalizing a single categorical variable
allow for any type of non-linearity to be modeled, leaving no
un-modeled non-linearity.

• Continuous (and quasi-continuous) variables are not always
linearly related to the response and present opportunities for
un-modeled non-linearity.

• We want to know the extent to which these variables exhibit linear
relationships.
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Linearity and Multi-Category Variables

Multi-category variables are generally not problematic because we
code them as a series of dummy regressors. Thus, we are not
imposing any functional form on the relationship between the
categories and the response variable.

The waters are a bit murkier for ordinal variables (e.g., state
repression or political ideology).

• These variables are often operationalized with relatively few
categories.

• However, we often have a strong suspicion that the relationship
between these variables and the response is “roughly linear”.

• If the relationship is not linear and we represent it with a line,
then we are getting a biased estimate of the relationship.

• If the relationship could be represented linearly, and we represent
it with a series of dummy regressors, we are getting estimates that
are ine�cient
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Testing the Hypothesis

Consider the model1:

� = f (x ) + �

Ultimately, we want to test whether a linear approximation is
su�cient.

H0 :f (x ) = �0 + �1x

HA :f (x ) , �0 + �1x (i.e., the function is more complicated)

We don’t have to have know or specify the functional form of the
alternative hypothesis, rather just that it is more complicated than
linear.

1Covariates can be added to the model below without loss of generality
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Testing the Hypothesis: Ordinal Variables

The hypothesis suggested above is relatively easy to test when the
independent variable is ordinal (i.e., categorical).

H0 :f (x ) = �0 + �x
HA :f (x ) = �0 + �

⇤
1I (x = 2) + �⇤2I (x = 3) + �⇤3I (x = 4) + �⇤4I (x = 5)

where I () is an indicator function such that:

I (x = k ) =

(

1 if x = k

0 otherwise
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Expectations

Consider the model: � = � + �x + � where x = {1, 2, 3, 4, 5}. What
would we expect if x and � are perfectly linearly related?
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An Example

I generated data with the following such that xi 2 {1, 2, 3, 4, 5} and

�i = 2 + x + �i

where �i ⇠ N (0, 2).

We can use an F-test to get the desired result. To accomplish this, we
need to do:

1. Run the model by creating dummy variables for all but the
smallest category of the variable in question.

2. Test the appropriate restrictions on the model.
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Example Continued

Here is the model output:

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5335 -1.2756 -0.0546 1.3060 6.6972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1808 0.1945 16.354 < 2e-16 ***
## x2 0.6041 0.2751 2.196 0.0285 *
## x3 2.0601 0.2751 7.490 3.19e-13 ***
## x4 2.7467 0.2751 9.986 < 2e-16 ***
## x5 4.0309 0.2751 14.655 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.945 on 495 degrees of freedom
## Multiple R-squared: 0.3609,Adjusted R-squared: 0.3557
## F-statistic: 69.87 on 4 and 495 DF, p-value: < 2.2e-16
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Hypothesis Test

We can also perform a hypothesis test using the general linear
hypothesis testing:

library(car)
hyps <- c("2*x2 = x3", "3*x2 = x4",

"4*x2 = x5")
linearHypothesis(mod, hyps)

## Linear hypothesis test
##
## Hypothesis:
## 2 x2 - x3 = 0
## 3 x2 - x4 = 0
## 4 x2 - x5 = 0
##
## Model 1: restricted model
## Model 2: y ~ x
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 498 1888.4
## 2 495 1872.5 3 15.896 1.4008 0.2418
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Linear vs. Non-linear e↵ect
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Results

The results of the F -test suggest that the dummy variable model is
not significantly better than the model with one linear term (i.e.,
p > 0.05).

There is another, equivalent way to do this test:

restricted.mod <- lm(y ~ as.numeric(x))
unrestricted.mod <- lm(y ~ x)
anova(restricted.mod, unrestricted.mod, test="F")

## Analysis of Variance Table
##
## Model 1: y ~ as.numeric(x)
## Model 2: y ~ x
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 498 1888.4
## 2 495 1872.5 3 15.896 1.4008 0.2418
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Real Data Example

library(foreign)
dat <- read.dta("http://www.quantoid.net/files/reg3/linear_ex.dta")
restricted.mod <- lm(rep1 ~ polity_dem + iwar +

cwar + logpop + gdppc,data=dat)
dat$polity_dem_fac <- as.factor(dat$polity_dem)
unrestricted.mod <- lm(rep1 ~ polity_dem_fac + iwar +

cwar + logpop + gdppc,data=dat)
anova(restricted.mod, unrestricted.mod, test="F")

## Analysis of Variance Table
##
## Model 1: rep1 ~ polity_dem + iwar + cwar + logpop + gdppc
## Model 2: rep1 ~ polity_dem_fac + iwar + cwar + logpop + gdppc
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2677 2538.3
## 2 2668 2163.3 9 374.98 51.385 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Plot of e↵ects
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Linearity of Factors in GLMs

library(foreign)
anes <- read.dta("http://www.quantoid.net/files/reg3/anes1992.dta")
anes$pidfac <- as.factor(anes$pid)
unrestricted.mod <- glm(votedem ~ retnat + pidfac + age + male +

educ + black + south, data=anes, family=binomial)
restricted.mod <- glm(votedem ~ retnat + pid + age + male + educ +

black + south, data=anes, family=binomial)
anova(restricted.mod, unrestricted.mod, test='Chisq')

## Analysis of Deviance Table
##
## Model 1: votedem ~ retnat + pid + age + male + educ + black + south
## Model 2: votedem ~ retnat + pidfac + age + male + educ + black + south
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 1030 802.09
## 2 1025 768.00 5 34.093 2.281e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Plot of e↵ects
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Ordinal Dependent Variables

Above, we considered ordinal independent variables, but what if the
dependent variable is ordered?

• There is a dependent-variable analog to what we just did for
independent variables called Alternating Least Squares Optimal
Scaling (ALSOS)

• Developed as a method to estimate quantitative models on
qualitative data without making arbitrary and ultimately
unjustifiable assumptions about category spacing.
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Ordinality

Recall that ordinal means the spacing between categories is unknown.
• To the extent that a spacing between categories exists
numerically (e.g., by having categories coded as increasing
integers starting with one), the spacing is arbitrary and artificial.

Optimal scaling can be used to assign numerical values to the
categories. Bock (1960, via Young [1981]) describes optimal scaling as:

... a data analysis technique which assigns numerical values
to observation categories in a way which maximizes the
relationship between the observations and the data analysis
model while respecting the measurement character of the
data.

As Young (1981) suggests:

If a procedure is known for obtaining a least squares
description of numerical (interval or ratio measurement
level) data then an ALSOS algorithm can be constructed to
obtain a least squares description of qualitative data (having
a variety of measurement characteristics).
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ALSOS Algorithm
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In Greater Detail

Initialize algorithm by setting �̂ (0) = � and R2(0) = 0. Then, for
iterations 1:N -

1. Regress �̂ (t�1) on X , save R2(t ). If R2(t ) � R2(t�1) > tolerance,
continue, otherwise end saving �̂ (t�1) as the optimally scaled
values of �.

2. Optimally scale �̂ (t ) against �̂ (t�1).
3. Repeat until convergence
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Optimal Scaling

Assume we have the following variables on n observations:

• o (with elements oi) which are ordered in such a way that all
observations in a particular category are contiguous

• ẑ (with elements ẑi) which are model estimates in one-to-one
correspondence with o.

• z⇤ (with elements z⇤i which are optimally scaled version of ẑ

The OS problem, then, is to find the transformation `[o] = [z⇤] where:

• The precise definition of `[·] depends on the measurement
characteristics of o, and

• z⇤ has a least squares relationship to ẑ (the model estimates of
z⇤).

See http://forrest.psych.unc.edu/teaching/p230/LSMT-1.pdf
for more on the computational details of the solution.
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Measurement Level and Measurement Process

Measurement Level:
• Here, we are focusing on ordinal measurement level. We already
have methods for finding optimal transformations of continuous
data (to be discussed later). Though we could do this for nominal
data, I think few reviewers would regard this as a viable strategy.

Measurement Process:
• Discrete: tied observations remain tied in the optimal scaling
solution (Kruskal’s Secondary Monotonic Transformation)

`do :(oi ⇠ om ) ! (z⇤i = z⇤m )

(oi � om ) ! (z⇤i  z⇤m )

• Continuous: tied observations can become untied in the optimal
scaling solution (Kruskal’s Primary Monotonic Transormation)

`co :(oi ⇠ om ) ! (z�i = z�m ) 
(

z⇤i
z⇤m

)

 (z+i = z+m )

(oi � om ) ! (z⇤i  z⇤m )
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Initialization and Convergence

• The ALSOS procedure is not guaranteed to converge to a global
minimum, but to what Young (1981) calls a “conditional global
optimum”

• Where “conditional” refers to the fact that the solution is
conditional on the current model parameters.

• It is possible that two di↵erent optimal scaling solutions can be
arrived at by initializing the algorithm in two di↵erent ways.

• Generally, the algorithm is initialized with least squares estimates
on the raw (i.e., original) data.

• Random starts could be chosen to assess sensitivity.
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Example

Consider Polity’s Democracy variable, an 11-point scale.

• We want to know whether the spacing between polity categories
as currently coded makes sense.

• Here, “makes sense” is in relation to a particular statistical model

library(foreign)
dat <- read.dta(

"http://www.quantoid.net/files/reg3/linear_ex.dta")
source("http://www.quantoid.net/files/reg3/alsosdv.r")
tmp <- alsosDV(polity_dem ~ iwar + cwar + I(gdppc/10000) + logpop + rep1,

dat, process=1, level=2, maxit=30, na.action=na.exclude, starts=NULL)
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The Result

plot(tmp$result, main.title="")
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Result: Iteration History

tmp$iterations

## r-squared r-squared dif

## 1 0.3646 0.3646

## 2 0.5736 0.2089

## 3 0.5737 0.0002
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Table: Model Comparison

Raw OS
(Intercept) �1.729⇤ �1.692⇤

(0.406) (0.333)
iwar 1.740⇤ 1.990⇤

(0.344) (0.282)
cwar 0.403 0.227

(0.368) (0.301)
I(gdppc/10000) 1.488⇤ 2.099⇤

(0.135) (0.111)
logpop 0.483⇤ 0.435⇤

(0.045) (0.037)
rep1 �1.347⇤ �1.593⇤

(0.061) (0.050)
N 2683 2683
R2 0.365 0.574
adj. R2 0.363 0.573
Resid. sd 3.355 2.748
Standard errors in parentheses
⇤ indicates significance at p < 0.05
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Sensitivity Testing

inits <- function(x, lower=-20, upper=20){
tab <- table(x)
nt <- length(tab)
ru <- runif(nt, lower, upper)
ru[2:nt] <- abs(ru[2:nt])
ru <- cumsum(ru)
newx <- ru[match(x, names(tab))]
newx

}
res <- vector("list", 1000)
for(i in 1:1000){
res[[i]] <- alsosDV(formula, dat, maxit=30,

na.action=na.exclude, starts=inits(dat$polity_dem,
lower=-100, upper=100))$iterations

}
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Diagnosing Non-Linearity

Diagnosing non-linearity in relationships between continuous
predictors is a bit more tricky.

We will use an analysis of the residuals to diagnose whether the
relationship between X and � is well-characterized by a line.

We will also need to figure out a flexible way to model the
dependencies between X and the residuals.

• To do this, we will need to learn something about non-parametric
regression
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Parametric vs. Non-parametric

Our goal is to trace the dependence of � on x . Specifically, we usually
want to get something like:

�i |xi = f (xi ) + ei

We usually define f (·) to be “smooth”.

• The linear functional form (f (xi ) = � + �xi)is the “smoothest” of
smooth function.

The above model is parametric, because we are estimating parameters
that describe relationship between � and x .

It is possible to characterize the relationship without estimating
global parameters (i.e., parameters that apply to all of the
observations equally) - what we call non-parametric models.
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Global vs. Local Parametric Models

All of the models we will talk about below are locally parametric.

• They fit a parametric model to a relatively small subset of the
data.

• The sum total of these many local parametric fits is a
non-parametric fit - one that does not impose the same
functional form for all of the data.

Because these models remain locally parametric, we can usually use
information from the many local models to derive standard errors for
the fit. (More on this later)
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Local Polynomial Regression

To estimate the local polynomial regression between � and x , start
with the smallest unique value of x (call it x0) and you would
estimate:

�iwi = �0 + �1xiwi + �2x
2
i wi + �iwi

for the span⇥100% of the observations closest to x0. Let’s say for the
sake or argument that the span= 0.5.

1. Find the 50% of the points closes to x0 by calculating
di = |xi � x0 | and then taking the 50% smallest values of di .

2. For the observations in the subsample, calculate the scaled
distance such that d̃i =

di
max (di ) . This makes the largest distance

in the subsample equal to 1.
3. Calculate the weights for the subset using the tricube weight

function.

wi =
⇣
1 � d̃3

⌘3

wi for observations outside the subset will be 0.
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Tricube Function

What does the tricube weighting function look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

w

37 / 82

Robustness Weighting in Local Polynomial Regression

The steps to robustness weighted local polynomial regression are as
follows:

1. Fit the local regressions using weights wi

2. Calculate the residuals �̂i = �i � �̂i
3. Determine the median of the absolute values of the residuals q̂ .5
4. Find the robustness weights (with the Bisquare weight function):

ri = B

 
�̂i
6q̂ .5

!

where:

B (u) =

(

(1 � u2)2, if |u | < 1;
0, otherwise.

5. Repeat the loess procedure using weights riwi

6. Repeat steps 2-5 until the loess model converges.
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Bisquare Weighting Function

What does the bisquare weight function look like?
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Choosing the Span

The choice of span (i.e., the number of points included in each local
model) - this encapsulates the bias-variance tradeo↵.

• A bigger span can induce bias which results in a non-parametric
estimate that is not faithful to the local patterns in the data

• A smaller span can exhibit considerable variability while sticking
very closely to the local pattern in the data. Overfitting is a
potential problem here.

Overfitting is not necessarily a problem if we only care about the
relationship in this sample. However, if we are (either explicitly or
implicitly) trying to say something about a population with the
sample, then overfitting can be a real problem.
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Choosing Polynomial Degree and Weight Function

Polynomial Degree:

• Higher degree polynomials are more likely to overfit the data.

• The most common advice is to set the polynomial degree to 2
and adjust the span to generate the required smoothness of fit.

Weight Function:

• The default in R is the tricube weight function.

• There is little reason to change this as it generally has a
relatively small e↵ect on the overall estimate.
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LPR in R

There are two di↵erent versions of this type of regression: Loess and
Lowess.

• In R, The important di↵erence between these two is that Loess
can take multiple predictors (i.e., multiple nonparametric
regression) whereas Lowess only takes 1. Further, the user has
much more control over loess than lowess, so we spend time on
the former.

• Both loess and lowess are in the stats package that comes
with every distribution of R.

• The robustness weighting is done by specifying
family = symmetric in the loess command. Otherwise, if
family = gaussian, no robustness weighting (only distance
weighting) will be done.
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Loess Graph
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Interpretation of Non-Parametric Fits

• Often, we are tempted to impose some meaning on small bumps
and dips in the local fit. As Keele (2007) suggests - “it is a
temptation analysis should resist.”

• It is often useful to consider the overall general pattern in the
data and if there appears to be a pattern that can be modeled
parametrically - impose that fit and assess the di↵erence between
the parametric and non-parametric models (more on this later).

44 / 82



Plotting the LOESS curve

source('http://quantoid.net/files/reg3/plot.loess.r')
lo <- loess(prestige ~ income, data=Prestige, span=.75)
plot.loess(lo, addPoints=TRUE)
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First Derivatives from LOESS Curve

Though we don’t normally talk about it this way, in an OLS model, a
variable’s e↵ect is the partial first derivative of the equation with
respect to the variable of interest.

• With a parametric form, this is easily calculated.

• With non-parametric regression, we can estimate the partial first
derivative with:

@ f (x )

@x
=

f (x |x + � ) � f (x |x )
�

where � is a small number (e.g., 0.00001)
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Loess Derivatives

source('http://quantoid.net/files/reg3/loessderiv.r')
deriv <- loessDeriv(lo)
tmp <- data.frame(income=lo$x, deriv=deriv)
tmp <- tmp[order(tmp$income), ]
plot(tmp, type="l")
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Non-linearity

• The assumption that the average error E (� ) is everywhere zero
implies that the regression surface accurately reflects the
dependency of Y on the X ’s

• We can see this as linearity in the broad sense
• i .e ., non-linearity refers to a partial relationship between two

variables that is not summarized by a straight line, but it could
also refer to situations when two variables specified to have
additive e↵ects actually interact.

• Violating this assumption implies that the model fails to account
for a systematic pattern between Y and the X ’s

• Often models characterized by this violation will still provide a
useful approximation of the pattern in the data, but they can also
be misleading

• It is impossible to directly view the regression surface when more
than two predictors are specified, but we can employ partial
residual plots to assess non-linearity.

49 / 82

Partial-Residual Plots (Component-plus-residual plots)

• The partial residual for the jth explanatory variable from a
multiple regression is

E (j )
i = Ei + BjXi j

• This simply adds the linear component of the partial regression
between Y and X j (which may be characterized by a non-linear
component) to the least squares residuals

• The “partial residuals” E (j ) are plotted versus X j , meaning that
Bj is the slope of the multiple simple regression of E (j ) on X j

• A non-parametric smooth helps assess whether the linear trend
adequately captures the partial relationship between Y and X .
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Example of partial residual plots (1): The Canadian Prestige Data

data(Prestige)
Prestige$income <- Prestige$income/1000
Prestige.model<-lm(prestige ~ income + education +

women, data=Prestige)
library(car)
crPlot(Prestige.model, "income")
crPlot(Prestige.model, "education")
crPlot(Prestige.model, "women")
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Example of partial residual plots (2): The Canadian Prestige Data
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• The plot for income suggests a power transformation down the
ladder of powers; for education the departure from linearity isn’t
problematic; for % women, there appears to be no relationship
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Testing Non-linearity with CR Plots

While this is not a substitute for looking at the graphs, I have written
a couple of functions that will allow you to use an F-test to evaluate
significant departures from linearity.

crTest(Prestige.model, adjust.method="holm")

## RSSp RSSnp DFnum DFdenom F p

## income 6033.57 4985.47 4.285 95.715 4.696 0.004

## education 6033.57 5460.73 3.034 96.966 3.352 0.043

## women 6033.57 5838.12 2.901 97.099 1.120 0.344
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Inference for Nonparametric Models

In the example above, we are testing the local polynomial regression
against the straight line in the CR Plot. The main issue is figuring
out the degrees of freedom for the LPR.

We know in OLS:

• Ä̂ = HÄ and d fmodel = tr (H )

• H is symmetric and idempotent so tr (H ) = tr (HH 0)

• Residual variance is e 0e
tr [(I �H )0(I �H )] where the denominator is the

residual degrees of freedom.
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Degrees of Freedom II

In LPR, Ä = SÄ, we have three di↵erent degrees of freedom estimates
based on the OLS properties from above:

• tr (S ) (df model)

• tr (SS 0) (df model)

• tr [(I � S )0(I � S )] = n � tr (2S + SS 0) (df residual), so tr (2S + SS 0

would be the model df.

Each provides a potentially di↵erent number with none being
particularly preferred over the other.
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F -Tests and Nonparametric Models

We can perform an incremental F -tests on two nonparametric models

F =

RSSN �RSSA
�1

RSSA
� (A)
1

where � (A)
1 is as defined above for the alternative (or full) model and

�1 is � (A)
1 � � (N )

1 and RSS are residual sums of squares.

• This statistic follows and F distribution with

⇣
� (A)
1 �� (N )

1

⌘2

� (A)
2 �� (N )

2

numerator and
� (A)2
1

� (A)
2

denominator degrees of freedom.
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Di↵erent Spans in the Loess Model

crst <- crSpanTest(Prestige.model,

c(.1,.9), adjust.method="holm",

adjust.type="both")

matplot(crst$x, crst$y, type="l", lwd=3,

xlab = "Span", ylab = "p-value")

abline(h=0.05, col="gray75", lty=2)

crst <- crSpanTest(Prestige.model,

c(.1,.9), adjust.method="none",

adjust.type="none")

matplot(crst$x, crst$y, type="l", lwd=3,

xlab = "Span", ylab = "p-value")

abline(h=0.05, col="gray75", lty=2)
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Graph from Span test

Figure: Di↵erent Spans with and without Multiple-testing Correction
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Two Dimensions of Nonlinearity

• Simple vs. Complex
• Simple means the curvature of the function relating x to � does

not change direction (i.e., there is no inflection point).
• Complex means that there is an inflection point.

• Monotone vs Non-monotone
• Monotone means that as x increases the function relating x to �

never decreases or x increases the function relating x to � never
increases, depending on the nature of the function.
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Handling Non-linearity: Common Strategies

Simple, monotone

• Transformations of Y and/or X

Complicated Non-linearity

1. Polynomial Regression
• If pattern has too many turns, polynomials tend to oversmooth

peaks

2. Regression Splines

3. More complicated non-parametric models.
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Transformable Non-linearity: Bulging rule

• The direction of the bulge
indicates the appropriate
type of power transformation
for Y and/or X

• A bulge to the top left of the
scatterplot suggests
transforming Y up the ladder
of powers and/or X down
the ladder of powers will
straighten the relationship
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Maximum Likelihood Transformation Methods

• Although the ad hoc methods for assessing non-linearity are
usually e↵ective, there are more sophisticated techniques based
on maximum likelihood estimation

• These techniques embed the usual multiple-regression model in a
more general non-linear model that contains (a) parameter(s) for
the transformation(s)

• The transformation parameter � is estimated simultaneously with
the usual regression parameters by maximizing the likelihood and
this obtaining MLEs: L (�,� , �1, . . . , �k ,�2

� )
• If � = �0 (i.e., there is no transformation), a likelihood ratio test,

Wald test, or score test of H0 : � = �0 can assess whether the
transformation is required

• If several variables need to be transformed, several such
parameters need to be included
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Box-Tidwell Transformation of the X ’s (1)

• Maximum likelihood can also be used to find an appropriate
linearizing transformation for the X variables

• The Box-Tidwell model is a non-linear model that estimates
transformation parameters for the X ’s simultaneously with the
regular parameters

Yi = � + �1X
�1
i1 + · · · + �kX

�k
ik + �i

where the errors are iid: � ⇠ N (0,�2
� In ) and the Xi j are positive

• Explicit in this model is a power transformation of each of the
X ’s

• Of course, we would not want to transform dummy variables and
the like, so we should not attempt to estimate transformation
parameters for them
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Box-Tidwell Transformation of the X ’s (2)

The Box and Tidwell procedure yields a constructed variable
diagnostic in the following way:

1. Regress Y on the X ’s and obtain A,B1, . . . ,Bk .

2. Regress Y on the X ’s and the constructed variables
X1 loge X1, . . . ,Xk loge Xk to obtain A0,B01, . . . ,B

0
k ,D1, . . . ,Dk

3. The constructed variables are used to assess the need for a
transformation of X j by testing the null hypothesis H0 : � j = 0

where D j = �̂ j
4. A preliminary estimate of the transformation parameter �j is

given by

�̃j = 1 +
D j

Bj

where Bj is the coe�cient on X j from the original equation in
step 1

5. Steps 1,2, and 4 are iterated until the transformation parameters
converge
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Box-Tidwell transformation Example: Prestige Data

data(Prestige)
boxTidwell(prestige ~ income + education,

~poly(women, 2), data=Prestige)

## Score Statistic p-value MLE of lambda
## income -5.301289 0.0000001 -0.0377746
## education 2.405557 0.0161479 2.1928267
##
## iterations = 12

• A quadratic partial regression is included for women because we
saw earlier that this might be needed.

• The statistically significant score tests indicate that
transformations are needed for both variables

• The MLE of Power suggests that income should be transformed
by a power of -0.037 (suggesting the log would work well) and
education by a power of 2.19, suggesting that education2 would
su�ce
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Testing the Transformations

If you wanted to test whether the transformations were “close
enough”, you could just re-run the Box-Tidwell function on the new
model with the transformed variables.

• If the transformations you provided (e.g., the log instead of
-0.03) were good enough, then the transformation powers on the
new data should be insignificant.
boxTidwell(prestige ~ log(income) + I(education^2),

~poly(women, 2), data=Prestige)

## Score Statistic p-value MLE of lambda
## log(income) -0.1860504 0.8524053 0.792984
## I(education^2) 0.3616705 0.7175983 1.093631
##
## iterations = 5

• Notice that in both cases, the p-values are > 0.05
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Another Method for Testing Transformations

Another alternative would be to test the transformation against a
LOESS smooth.

mod <- lm(prestige ~ income, data=Prestige)
trans.mod <- lm(prestige ~ log(income), data=Prestige)
loess.mod <- loess(prestige ~ income, data=Prestige, span=.5,

family="symmetric")
testLoess(mod, loess.mod)

## F = 2.9
## Pr( > F) = 0.01
## LOESS preferred to alternative

testLoess(trans.mod, loess.mod)

## F = 1.63
## Pr( > F) = 0.14
## LOESS not statistically better than alternative
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Inverse Hyperbolic Sine Transformation

Sometimes, the log transform is not the most useful because a
variable has lots of zeros and you don’t want to add a constant to all
counts. The IHS transformation is a good alternative.

IHS(x ) =
sinh�1 (�x )

�
=
lo�

⇣
�x + lo�(�x2 + 1) (

1
2 )

⌘

�
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Using the IHS Transform

IHS <- function(x,theta = 1){asinh(theta*x)/theta}
trans.mod2 <- lm(prestige ~ IHS(income), data=Prestige)
summary(trans.mod2)

##
## Call:
## lm(formula = prestige ~ IHS(income), data = Prestige)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.114 -9.342 -1.218 8.101 30.454
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -154.797 18.305 -8.457 2.35e-13 ***
## IHS(income) 21.556 1.953 11.037 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.61 on 100 degrees of freedom
## Multiple R-squared: 0.5492,Adjusted R-squared: 0.5447
## F-statistic: 121.8 on 1 and 100 DF, p-value: < 2.2e-16

The IHS transform will also work with the effects package.
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E↵ects Plots

mod <- lm(prestige ~ log(income) + I(education^2) +
poly(women, 2), data=Prestige)

plot(effect("log(income)",
mod, default.levels=100))

plot(effect("I(education^2)",
mod, default.levels=100))
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Polynomial Regression

• Two or more regressors of ascending power (i.e., linear, quadratic
and cubic terms) are used to capture the e↵ects of a single
variable

• For every bend in the curve, we add another term to the model,
going up in power each time

• The terms fit a non-linear function of the explanatory variable X ,
but the parameters enter the formula in a linear fashion - Y is
predicted by a linear combination of parameter estimates times
the values of X

• In other words, polynomial models are linear in the parameters
even though they are non-linear in the variables

Order Equation
First Y = � + �1X
Second Y = � + �1X + �2X

2

Third Y = � + �1X + �2X
2 + �3X

3
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Polynomial equations: How to choose the order

• It is initially useful to look at the bends in a smooth of the
scatterplot or partial residual plot

• If there is only one, a second order polynomial should be tried.
For each extra bulge, we go up one in order

• A good strategy is to start with one more than you think the
model needs and drop the term if it is not statistically significant

• Incremental F -tests can be used to help pick the “right” order to
use in the equation

• If the term is not statistically significant, it is usually advisable to
delete the term from the model - we want as few order terms as
possible

• For orthogonal polynomials, t-tests can be used

• If the order is too high, however, the results will not be easy to
interpret (higher than third order is rarely used)
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Orthogonalizing Regressors

It is possible to orghotonalize the power regressors before fitting the
model, below is an example for a 3rd degree polynomial.

1. Create (p1,p2,p3) = (X ,X 2,X 3)

2. Use p1 as the value for the first-degree term.

3. Regress the p2 and p3 on p1 and create residuals e (1)2 and e (1)3 ,

respectively. Use e (1)2 as the value for the second-degree term

4. Regress e (1)3 on p1 and e (1)2 and use the residuals from that

equation (call them e (2)3 ) as the third degree term.

This is not exactly what poly in R does, but the idea is similar.
poly() also does some other normalization, so results using the above
method, while equivalent in model fit terms will generate di↵erent
coe�cient estimates.
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Orthogonal Polynomials in R Example: Prestige Data

• One can fit a polynomial regression by calculating the regressors
individually and adding them to the regression equation - i.e.,
calculate and add a quadratic term X 2 and a cubic term X 3

manually.
• Orthogonal Polynomials can be added in a much more simple -
and better - way in R , however, by specifying a poly argument
to the variable. Non-orthogonal polynomials can be specified
with the raw=T argument to poly.

• The order of the polynomial is specified after the variable name
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Regression Output

##
## Call:
## lm(formula = prestige ~ log(income) + poly(education, 2) + women,
## data = Prestige)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.1714 -3.7064 -0.3755 4.3029 17.2487
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.91272 17.08393 -3.975 0.000135 ***
## log(income) 13.07930 1.90475 6.867 6.27e-10 ***
## poly(education, 2)1 103.38447 9.63587 10.729 < 2e-16 ***
## poly(education, 2)2 12.63013 7.19449 1.756 0.082326 .
## women 0.05082 0.02967 1.713 0.089957 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.018 on 97 degrees of freedom
## Multiple R-squared: 0.8402,Adjusted R-squared: 0.8336
## F-statistic: 127.5 on 4 and 97 DF, p-value: < 2.2e-16

• Since orthogonal polynomials were used, the t-test for the
individual parameters is all that is needed. An F -test will show
nothing di↵erent

• Nonlinear e↵ects are di�cult to comprehend in numerical form.
Graphing the fitted values provides a much better alternative.
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E↵ect Displays for Income and Education

library(effects)

plot(effect("log(income)", mod,

default.levels=100, se=T))

plot(effect("poly(education, 2)", mod,

default.levels=100, se=T))
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Readings

Today: Linearity Diagnostics

⇤ Fox (2008) Chapters 4, 12 (Sections 12.3-12.5) & 17
⇤ Fox (2002) Chapter 3
⇤ Jacoby (1999)
� Fox (2000)
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